• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 1
  • Tagged with
  • 9
  • 9
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Motor imagery classification using sparse representation of EEG signals

Saidi, Pouria 01 January 2015 (has links)
The human brain is unquestionably the most complex organ of the body as it controls and processes its movement and senses. A healthy brain is able to generate responses to the signals it receives, and transmit messages to the body. Some neural disorders can impair the communication between the brain and the body preventing the transmission of these messages. Brain Computer Interfaces (BCIs) are devices that hold immense potential to assist patients with such disorders by analyzing brain signals, translating and classifying various brain responses, and relaying them to external devices and potentially back to the body. Classifying motor imagery brain signals where the signals are obtained based on imagined movement of the limbs is a major, yet very challenging, step in developing Brain Computer Interfaces (BCIs). Of primary importance is to use less data and computationally efficient algorithms to support real-time BCI. To this end, in this thesis we explore and develop algorithms that exploit the sparse characteristics of EEGs to classify these signals. Different feature vectors are extracted from EEG trials recorded by electrodes placed on the scalp. In this thesis, features from a small spatial region are approximated by a sparse linear combination of few atoms from a multi-class dictionary constructed from the features of the EEG training signals for each class. This is used to classify the signals based on the pattern of their sparse representation using a minimum-residual decision rule. We first attempt to use all the available electrodes to verify the effectiveness of the proposed methods. To support real time BCI, the electrodes are reduced to those near the sensorimotor cortex which are believed to be crucial for motor preparation and imagination. In a second approach, we try to incorporate the effect of spatial correlation across the neighboring electrodes near the sensorimotor cortex. To this end, instead of considering one feature vector at a time, we use a collection of feature vectors simultaneously to find the joint sparse representation of these vectors. Although we were not able to see much improvement with respect to the first approach, we envision that such improvements could be achieved using more refined models that can be subject of future works. The performance of the proposed approaches is evaluated using different features, including wavelet coefficients, energy of the signals in different frequency sub-bands, and also entropy of the signals. The results obtained from real data demonstrate that the combination of energy and entropy features enable efficient classification of motor imagery EEG trials related to hand and foot movements. This underscores the relevance of the energies and their distribution in different frequency sub-bands for classifying movement-specific EEG patterns in agreement with the existence of different levels within the alpha band. The proposed approach is also shown to outperform the state-of-the-art algorithm that uses feature vectors obtained from energies of multiple spatial projections.
2

Um método de avaliação da amplitude do potencial P300 comparando indivíduos com alto risco e baixo risco para o alcoolismo

Lopes, Carla Diniz January 2010 (has links)
A ocorrência de variações nos sinais de eletroencefalograma (EEG) de indivíduos que apresentam predisposição a desenvolver a doença do alcoolismo é conhecida e documentada na literatura médica e científica. Dentre as possíveis variações, encontram-se as anormalidades no potencial relacionado ao evento (ERP) P300, um dos principais endofenótipos da doença. Geralmente, este componente tem uma amplitude significativamente menor em indivíduos com alto risco (AR) de desenvolver a doença, quando comparada à amplitude observada em sinais de indivíduos com baixo risco (BR). A técnica atualmente empregada para distinguir os sinais de ERPs P300 dos indivíduos com AR e BR para desenvolver o alcoolismo é baseada na análise visual da amplitude máxima no domínio do tempo e do espectro de frequencias do sinal, obtido através da transformada de Fourier. O objetivo deste trabalho é contribuir para o estudo da identificação da predisposição ao alcoolismo, utilizando técnicas de processamento de sinais, como a transformada wavelet (WT), e de inteligência artificial, por meio das redes neurais artificiais (ANNs). A WT foi utilizada por ser mais adequada ao tratamento de sinais como os ERPs (sinais nãoestacionários), quando comparada, por exemplo, à transformada de Fourier. As redes neurais possibilitam a automatização do processo de identificação dos diferentes grupos. Através de um sistema híbrido formado por estas duas técnicas, pretende-se extrair características de sinais de ERP que identifiquem indivíduos com predisposição ao alcoolismo, e automatizar a identificação destes indivíduos. No desenvolvimento da pesquisa, foi identificada a necessidade de aplicar um préprocessamento aos sinais de ERP, preparando-os para a transformação wavelet. Os coeficientes wavelet assim obtidos formaram os dados de entrada que alimentaram as (ANNs), as quais utilizaram o algoritmo de erro backpropagation no treinamento. Com as técnicas utilizadas, após o treinamento, as ANNs foram capazes de classificar cerca de 90% dos sinais de ERP dos indivíduos com AR e BR. / The occurrence of variations in electroencephalogram (EEG) signals of individuals who are predisposed to develop the disease of alcoholism is known and documented in the medical and scientific literature. Among these variations, are the abnormalities in the event related potential (ERP) P300, a major endophenotype of this disease. Generally, this component has an amplitude significantly smaller in patients at high risk (HR) of developing the disease when compared to the amplitude seen in the signals of individuals with low risk (LR). The technique currently used to distinguish signals of P300 ERPs in individuals with HR and LR for developing alcoholism is based on visual analysis of the maximum amplitude in the time domain and of the frequency spectrum of the signal, obtained via Fourier transform. The aim of this thesis is to study the identification of predisposition to alcoholism, by techniques of signal processing such as wavelet transform (WT) and artificial intelligence through artificial neural networks (ANNs). The WT was used because it is more appropriate for processing signals such as ERP (non-stationary signals), when compared, for example, to the Fourier transform. Neural networks enable the automation of the process of identifying the different groups. Using a hybrid system formed by these two techniques, it is intended to extract features of ERP signals that identify individuals predisposed to alcoholism, and automate the identification of these individuals. The research has identified the need to apply a pre-processing to the signals of ERP, preparing them for the wavelet transformation. The wavelet coefficients thus obtained formed the input data to fed the ANNs, which used the error algorithm backpropagation in training. Using these techniques, after training, the ANNs were able to classify about 90% of ERP signs of individuals with LR and HR.
3

Um método de avaliação da amplitude do potencial P300 comparando indivíduos com alto risco e baixo risco para o alcoolismo

Lopes, Carla Diniz January 2010 (has links)
A ocorrência de variações nos sinais de eletroencefalograma (EEG) de indivíduos que apresentam predisposição a desenvolver a doença do alcoolismo é conhecida e documentada na literatura médica e científica. Dentre as possíveis variações, encontram-se as anormalidades no potencial relacionado ao evento (ERP) P300, um dos principais endofenótipos da doença. Geralmente, este componente tem uma amplitude significativamente menor em indivíduos com alto risco (AR) de desenvolver a doença, quando comparada à amplitude observada em sinais de indivíduos com baixo risco (BR). A técnica atualmente empregada para distinguir os sinais de ERPs P300 dos indivíduos com AR e BR para desenvolver o alcoolismo é baseada na análise visual da amplitude máxima no domínio do tempo e do espectro de frequencias do sinal, obtido através da transformada de Fourier. O objetivo deste trabalho é contribuir para o estudo da identificação da predisposição ao alcoolismo, utilizando técnicas de processamento de sinais, como a transformada wavelet (WT), e de inteligência artificial, por meio das redes neurais artificiais (ANNs). A WT foi utilizada por ser mais adequada ao tratamento de sinais como os ERPs (sinais nãoestacionários), quando comparada, por exemplo, à transformada de Fourier. As redes neurais possibilitam a automatização do processo de identificação dos diferentes grupos. Através de um sistema híbrido formado por estas duas técnicas, pretende-se extrair características de sinais de ERP que identifiquem indivíduos com predisposição ao alcoolismo, e automatizar a identificação destes indivíduos. No desenvolvimento da pesquisa, foi identificada a necessidade de aplicar um préprocessamento aos sinais de ERP, preparando-os para a transformação wavelet. Os coeficientes wavelet assim obtidos formaram os dados de entrada que alimentaram as (ANNs), as quais utilizaram o algoritmo de erro backpropagation no treinamento. Com as técnicas utilizadas, após o treinamento, as ANNs foram capazes de classificar cerca de 90% dos sinais de ERP dos indivíduos com AR e BR. / The occurrence of variations in electroencephalogram (EEG) signals of individuals who are predisposed to develop the disease of alcoholism is known and documented in the medical and scientific literature. Among these variations, are the abnormalities in the event related potential (ERP) P300, a major endophenotype of this disease. Generally, this component has an amplitude significantly smaller in patients at high risk (HR) of developing the disease when compared to the amplitude seen in the signals of individuals with low risk (LR). The technique currently used to distinguish signals of P300 ERPs in individuals with HR and LR for developing alcoholism is based on visual analysis of the maximum amplitude in the time domain and of the frequency spectrum of the signal, obtained via Fourier transform. The aim of this thesis is to study the identification of predisposition to alcoholism, by techniques of signal processing such as wavelet transform (WT) and artificial intelligence through artificial neural networks (ANNs). The WT was used because it is more appropriate for processing signals such as ERP (non-stationary signals), when compared, for example, to the Fourier transform. Neural networks enable the automation of the process of identifying the different groups. Using a hybrid system formed by these two techniques, it is intended to extract features of ERP signals that identify individuals predisposed to alcoholism, and automate the identification of these individuals. The research has identified the need to apply a pre-processing to the signals of ERP, preparing them for the wavelet transformation. The wavelet coefficients thus obtained formed the input data to fed the ANNs, which used the error algorithm backpropagation in training. Using these techniques, after training, the ANNs were able to classify about 90% of ERP signs of individuals with LR and HR.
4

Um método de avaliação da amplitude do potencial P300 comparando indivíduos com alto risco e baixo risco para o alcoolismo

Lopes, Carla Diniz January 2010 (has links)
A ocorrência de variações nos sinais de eletroencefalograma (EEG) de indivíduos que apresentam predisposição a desenvolver a doença do alcoolismo é conhecida e documentada na literatura médica e científica. Dentre as possíveis variações, encontram-se as anormalidades no potencial relacionado ao evento (ERP) P300, um dos principais endofenótipos da doença. Geralmente, este componente tem uma amplitude significativamente menor em indivíduos com alto risco (AR) de desenvolver a doença, quando comparada à amplitude observada em sinais de indivíduos com baixo risco (BR). A técnica atualmente empregada para distinguir os sinais de ERPs P300 dos indivíduos com AR e BR para desenvolver o alcoolismo é baseada na análise visual da amplitude máxima no domínio do tempo e do espectro de frequencias do sinal, obtido através da transformada de Fourier. O objetivo deste trabalho é contribuir para o estudo da identificação da predisposição ao alcoolismo, utilizando técnicas de processamento de sinais, como a transformada wavelet (WT), e de inteligência artificial, por meio das redes neurais artificiais (ANNs). A WT foi utilizada por ser mais adequada ao tratamento de sinais como os ERPs (sinais nãoestacionários), quando comparada, por exemplo, à transformada de Fourier. As redes neurais possibilitam a automatização do processo de identificação dos diferentes grupos. Através de um sistema híbrido formado por estas duas técnicas, pretende-se extrair características de sinais de ERP que identifiquem indivíduos com predisposição ao alcoolismo, e automatizar a identificação destes indivíduos. No desenvolvimento da pesquisa, foi identificada a necessidade de aplicar um préprocessamento aos sinais de ERP, preparando-os para a transformação wavelet. Os coeficientes wavelet assim obtidos formaram os dados de entrada que alimentaram as (ANNs), as quais utilizaram o algoritmo de erro backpropagation no treinamento. Com as técnicas utilizadas, após o treinamento, as ANNs foram capazes de classificar cerca de 90% dos sinais de ERP dos indivíduos com AR e BR. / The occurrence of variations in electroencephalogram (EEG) signals of individuals who are predisposed to develop the disease of alcoholism is known and documented in the medical and scientific literature. Among these variations, are the abnormalities in the event related potential (ERP) P300, a major endophenotype of this disease. Generally, this component has an amplitude significantly smaller in patients at high risk (HR) of developing the disease when compared to the amplitude seen in the signals of individuals with low risk (LR). The technique currently used to distinguish signals of P300 ERPs in individuals with HR and LR for developing alcoholism is based on visual analysis of the maximum amplitude in the time domain and of the frequency spectrum of the signal, obtained via Fourier transform. The aim of this thesis is to study the identification of predisposition to alcoholism, by techniques of signal processing such as wavelet transform (WT) and artificial intelligence through artificial neural networks (ANNs). The WT was used because it is more appropriate for processing signals such as ERP (non-stationary signals), when compared, for example, to the Fourier transform. Neural networks enable the automation of the process of identifying the different groups. Using a hybrid system formed by these two techniques, it is intended to extract features of ERP signals that identify individuals predisposed to alcoholism, and automate the identification of these individuals. The research has identified the need to apply a pre-processing to the signals of ERP, preparing them for the wavelet transformation. The wavelet coefficients thus obtained formed the input data to fed the ANNs, which used the error algorithm backpropagation in training. Using these techniques, after training, the ANNs were able to classify about 90% of ERP signs of individuals with LR and HR.
5

Virtualaus objekto valdymo sistemos smegenų kompiuterio sąsajos tyrimas / Virtual object management system of the brain computer interface research

Šidlauskas, Kęstutis 26 August 2013 (has links)
Šiame darbe nagrinėjama smegenų – kompiuterio sąsajos (BCI) sistema. Taip pat dirbtinių neuroninių tinklų ir atsitiktinių miškų klasifikavimo algoritmų panaudojimas smegenų – kompiuterio sąsajos sistemose. Realizuotas smegenų – kompiuterio sąsajos prototipas. Šis prototipas leidžia valdyti kompiuterio pelę, naudojant elektroencefalogramos arba elektromiogramos skaitytuvą. Atliktas kompiuterio pelės valdymo, naudojant smegenų – kompiuterio sistemą, tyrimas, vykdant praktines užduotis. Rezultatai palyginti su įprastu būdu valdoma kompiuterio pele. Tyrime naudotas OCZ NIA elektroencefalogramos ir elektromiogramos signalų skaitytuvas. Palyginta kuris iš naudotų klasifikavimo algoritmų pasiekia didžiausią tikslumą. Padarytos išvados apie smegenų – kompiuterio sąsajos sistemos prototipo privalumus ir trūkumus. / This work analyzes the brain – computer interface (BCI) system. Also artificial neural networks and random forest classification algorithms are used in brain – computer interface systems. A prototype of the brain – computer interface was developed. The prototype lets you control your mouse using electromyogram or electroencephalogram reader. In this work, the practical tasks carried out mouse control study using a brain – computer interface. The results were compared with the normal – controlled computer mouse. The study used OCZ NIA electroencephalogram and electromyogram signal reader. Compared which of the used algorithms achieves the highest accuracy. The conclusions were drawn about the BCI prototype.
6

Models of EEG data mining and classification in temporal lobe epilepsy: wavelet-chaos-neural network methodology and spiking neural networks

Ghosh Dastidar, Samanwoy 22 June 2007 (has links)
No description available.
7

A brain-computer interface for navigation in virtual reality

Alchalabi, Bilal 04 1900 (has links)
L'interface cerveau-ordinateur (ICO) décode les signaux électriques du cerveau requise par l’électroencéphalographie et transforme ces signaux en commande pour contrôler un appareil ou un logiciel. Un nombre limité de tâches mentales ont été détectés et classifier par différents groupes de recherche. D’autres types de contrôle, par exemple l’exécution d'un mouvement du pied, réel ou imaginaire, peut modifier les ondes cérébrales du cortex moteur. Nous avons utilisé un ICO pour déterminer si nous pouvions faire une classification entre la navigation de type marche avant et arrière, en temps réel et en temps différé, en utilisant différentes méthodes. Dix personnes en bonne santé ont participé à l’expérience sur les ICO dans un tunnel virtuel. L’expérience fut a était divisé en deux séances (48 min chaque). Chaque séance comprenait 320 essais. On a demandé au sujets d’imaginer un déplacement avant ou arrière dans le tunnel virtuel de façon aléatoire d’après une commande écrite sur l'écran. Les essais ont été menés avec feedback. Trois électrodes ont été montées sur le scalp, vis-à-vis du cortex moteur. Durant la 1re séance, la classification des deux taches (navigation avant et arrière) a été réalisée par les méthodes de puissance de bande, de représentation temporel-fréquence, des modèles autorégressifs et des rapports d’asymétrie du rythme β avec classificateurs d’analyse discriminante linéaire et SVM. Les seuils ont été calculés en temps différé pour former des signaux de contrôle qui ont été utilisés en temps réel durant la 2e séance afin d’initier, par les ondes cérébrales de l'utilisateur, le déplacement du tunnel virtuel dans le sens demandé. Après 96 min d'entrainement, la méthode « online biofeedback » de la puissance de bande a atteint une précision de classification moyenne de 76 %, et la classification en temps différé avec les rapports d’asymétrie et puissance de bande, a atteint une précision de classification d’environ 80 %. / A Brain-Computer Interface (BCI) decodes the brain signals representing a desire to do something, and transforms those signals into a control command. However, only a limited number of mental tasks have been previously detected and classified. Performing a real or imaginary navigation movement can similarly change the brainwaves over the motor cortex. We used an ERS-BCI to see if we can classify between movements in forward and backward direction offline and then online using different methods. Ten healthy people participated in BCI experiments comprised two-sessions (48 min each) in a virtual environment tunnel. Each session consisted of 320 trials where subjects were asked to imagine themselves moving in the tunnel in a forward or backward motion after a randomly presented (forward versus backward) command on the screen. Three EEG electrodes were mounted bilaterally on the scalp over the motor cortex. Trials were conducted with feedback. In session 1, Band Power method, Time-frequency representation, Autoregressive models and asymmetry ratio were used in the β rhythm range with a Linear-Discriminant-analysis classifier and a Support Vector Machine classifier to discriminate between the two mental tasks. Thresholds for both tasks were computed offline and then used to form control signals that were used online in session 2 to trigger the virtual tunnel to move in the direction requested by the user's brain signals. After 96 min of training, the online band-power biofeedback training achieved an average classification precision of 76 %, whereas the offline classification with asymmetrical ratio and band-power achieved an average classification precision of 80%.
8

A brain-computer interface for navigation in virtual reality

Alchalabi, Bilal 04 1900 (has links)
L'interface cerveau-ordinateur (ICO) décode les signaux électriques du cerveau requise par l’électroencéphalographie et transforme ces signaux en commande pour contrôler un appareil ou un logiciel. Un nombre limité de tâches mentales ont été détectés et classifier par différents groupes de recherche. D’autres types de contrôle, par exemple l’exécution d'un mouvement du pied, réel ou imaginaire, peut modifier les ondes cérébrales du cortex moteur. Nous avons utilisé un ICO pour déterminer si nous pouvions faire une classification entre la navigation de type marche avant et arrière, en temps réel et en temps différé, en utilisant différentes méthodes. Dix personnes en bonne santé ont participé à l’expérience sur les ICO dans un tunnel virtuel. L’expérience fut a était divisé en deux séances (48 min chaque). Chaque séance comprenait 320 essais. On a demandé au sujets d’imaginer un déplacement avant ou arrière dans le tunnel virtuel de façon aléatoire d’après une commande écrite sur l'écran. Les essais ont été menés avec feedback. Trois électrodes ont été montées sur le scalp, vis-à-vis du cortex moteur. Durant la 1re séance, la classification des deux taches (navigation avant et arrière) a été réalisée par les méthodes de puissance de bande, de représentation temporel-fréquence, des modèles autorégressifs et des rapports d’asymétrie du rythme β avec classificateurs d’analyse discriminante linéaire et SVM. Les seuils ont été calculés en temps différé pour former des signaux de contrôle qui ont été utilisés en temps réel durant la 2e séance afin d’initier, par les ondes cérébrales de l'utilisateur, le déplacement du tunnel virtuel dans le sens demandé. Après 96 min d'entrainement, la méthode « online biofeedback » de la puissance de bande a atteint une précision de classification moyenne de 76 %, et la classification en temps différé avec les rapports d’asymétrie et puissance de bande, a atteint une précision de classification d’environ 80 %. / A Brain-Computer Interface (BCI) decodes the brain signals representing a desire to do something, and transforms those signals into a control command. However, only a limited number of mental tasks have been previously detected and classified. Performing a real or imaginary navigation movement can similarly change the brainwaves over the motor cortex. We used an ERS-BCI to see if we can classify between movements in forward and backward direction offline and then online using different methods. Ten healthy people participated in BCI experiments comprised two-sessions (48 min each) in a virtual environment tunnel. Each session consisted of 320 trials where subjects were asked to imagine themselves moving in the tunnel in a forward or backward motion after a randomly presented (forward versus backward) command on the screen. Three EEG electrodes were mounted bilaterally on the scalp over the motor cortex. Trials were conducted with feedback. In session 1, Band Power method, Time-frequency representation, Autoregressive models and asymmetry ratio were used in the β rhythm range with a Linear-Discriminant-analysis classifier and a Support Vector Machine classifier to discriminate between the two mental tasks. Thresholds for both tasks were computed offline and then used to form control signals that were used online in session 2 to trigger the virtual tunnel to move in the direction requested by the user's brain signals. After 96 min of training, the online band-power biofeedback training achieved an average classification precision of 76 %, whereas the offline classification with asymmetrical ratio and band-power achieved an average classification precision of 80%.
9

A Multi-Modal, Modified-Feedback and Self-Paced Brain-Computer Interface (BCI) to Control an Embodied Avatar's Gait

Alchalabi, Bilal 12 1900 (has links)
Brain-computer interfaces (BCI) have been used to control the gait of a virtual self-avatar with the aim of being used in gait rehabilitation. A BCI decodes the brain signals representing a desire to do something and transforms them into a control command for controlling external devices. The feelings described by the participants when they control a self-avatar in an immersive virtual environment (VE) demonstrate that humans can be embodied in the surrogate body of an avatar (ownership illusion). It has recently been shown that inducing the ownership illusion and then manipulating the movements of one’s self-avatar can lead to compensatory motor control strategies. In order to maximize this effect, there is a need for a method that measures and monitors embodiment levels of participants immersed in virtual reality (VR) to induce and maintain a strong ownership illusion. This is particularly true given that reaching a high level of both BCI performance and embodiment are inter-connected. To reach one of them, the second must be reached as well. Some limitations of many existing systems hinder their adoption for neurorehabilitation: 1- some use motor imagery (MI) of movements other than gait; 2- most systems allow the user to take single steps or to walk but do not allow both, which prevents users from progressing from steps to gait; 3- most of them function in a single BCI mode (cue-paced or self-paced), which prevents users from progressing from machine-dependent to machine-independent walking. Overcoming the aforementioned limitations can be done by combining different control modes and options in one single system. However, this would have a negative impact on BCI performance, therefore diminishing its usefulness as a potential rehabilitation tool. In this case, there will be a need to enhance BCI performance. For such purpose, many techniques have been used in the literature, such as providing modified feedback (whereby the presented feedback is not consistent with the user’s MI), sequential training (recalibrating the classifier as more data becomes available). This thesis was developed over 3 studies. The objective in study 1 was to investigate the possibility of measuring the level of embodiment of an immersive self-avatar, during the performing, observing and imagining of gait, using electroencephalogram (EEG) techniques, by presenting visual feedback that conflicts with the desired movement of embodied participants. The objective of study 2 was to develop and validate a BCI to control single steps and forward walking of an immersive virtual reality (VR) self-avatar, using mental imagery of these actions, in cue-paced and self-paced modes. Different performance enhancement strategies were implemented to increase BCI performance. The data of these two studies were then used in study 3 to construct a generic classifier that could eliminate offline calibration for future users and shorten training time. Twenty different healthy participants took part in studies 1 and 2. In study 1, participants wore an EEG cap and motion capture markers, with an avatar displayed in a head-mounted display (HMD) from a first-person perspective (1PP). They were cued to either perform, watch or imagine a single step forward or to initiate walking on a treadmill. For some of the trials, the avatar took a step with the contralateral limb or stopped walking before the participant stopped (modified feedback). In study 2, participants completed a 4-day sequential training to control the gait of an avatar in both BCI modes. In cue-paced mode, they were cued to imagine a single step forward, using their right or left foot, or to walk forward. In the self-paced mode, they were instructed to reach a target using the MI of multiple steps (switch control mode) or maintaining the MI of forward walking (continuous control mode). The avatar moved as a response to two calibrated regularized linear discriminant analysis (RLDA) classifiers that used the μ power spectral density (PSD) over the foot area of the motor cortex as features. The classifiers were retrained after every session. During the training, and for some of the trials, positive modified feedback was presented to half of the participants, where the avatar moved correctly regardless of the participant’s real performance. In both studies, the participants’ subjective experience was analyzed using a questionnaire. Results of study 1 show that subjective levels of embodiment correlate strongly with the power differences of the event-related synchronization (ERS) within the μ frequency band, and over the motor and pre-motor cortices between the modified and regular feedback trials. Results of study 2 show that all participants were able to operate the cued-paced BCI and the selfpaced BCI in both modes. For the cue-paced BCI, the average offline performance (classification rate) on day 1 was 67±6.1% and 86±6.1% on day 3, showing that the recalibration of the classifiers enhanced the offline performance of the BCI (p < 0.01). The average online performance was 85.9±8.4% for the modified feedback group (77-97%) versus 75% for the non-modified feedback group. For self-paced BCI, the average performance was 83% at switch control and 92% at continuous control mode, with a maximum of 12 seconds of control. Modified feedback enhanced BCI performances (p =0.001). Finally, results of study 3 show that the constructed generic models performed as well as models obtained from participant-specific offline data. The results show that there it is possible to design a participant-independent zero-training BCI. / Les interfaces cerveau-ordinateur (ICO) ont été utilisées pour contrôler la marche d'un égo-avatar virtuel dans le but d'être utilisées dans la réadaptation de la marche. Une ICO décode les signaux du cerveau représentant un désir de faire produire un mouvement et les transforme en une commande de contrôle pour contrôler des appareils externes. Les sentiments décrits par les participants lorsqu'ils contrôlent un égo-avatar dans un environnement virtuel immersif démontrent que les humains peuvent être incarnés dans un corps d'un avatar (illusion de propriété). Il a été récemment démontré que provoquer l’illusion de propriété puis manipuler les mouvements de l’égo-avatar peut conduire à des stratégies de contrôle moteur compensatoire. Afin de maximiser cet effet, il existe un besoin d'une méthode qui mesure et surveille les niveaux d’incarnation des participants immergés dans la réalité virtuelle (RV) pour induire et maintenir une forte illusion de propriété. D'autre part, atteindre un niveau élevé de performances (taux de classification) ICO et d’incarnation est interconnecté. Pour atteindre l'un d'eux, le second doit également être atteint. Certaines limitations de plusieurs de ces systèmes entravent leur adoption pour la neuroréhabilitation: 1- certains utilisent l'imagerie motrice (IM) des mouvements autres que la marche; 2- la plupart des systèmes permettent à l'utilisateur de faire des pas simples ou de marcher mais pas les deux, ce qui ne permet pas à un utilisateur de passer des pas à la marche; 3- la plupart fonctionnent en un seul mode d’ICO, rythmé (cue-paced) ou auto-rythmé (self-paced). Surmonter les limitations susmentionnées peut être fait en combinant différents modes et options de commande dans un seul système. Cependant, cela aurait un impact négatif sur les performances de l’ICO, diminuant ainsi son utilité en tant qu'outil potentiel de réhabilitation. Dans ce cas, il sera nécessaire d'améliorer les performances des ICO. À cette fin, de nombreuses techniques ont été utilisées dans la littérature, telles que la rétroaction modifiée, le recalibrage du classificateur et l'utilisation d'un classificateur générique. Le projet de cette thèse a été réalisé en 3 études, avec objectif d'étudier dans l'étude 1, la possibilité de mesurer le niveau d'incarnation d'un égo-avatar immersif, lors de l'exécution, de l'observation et de l'imagination de la marche, à l'aide des techniques encéphalogramme (EEG), en présentant une rétroaction visuelle qui entre en conflit avec la commande du contrôle moteur des sujets incarnés. L'objectif de l'étude 2 était de développer un BCI pour contrôler les pas et la marche vers l’avant d'un égo-avatar dans la réalité virtuelle immersive, en utilisant l'imagerie motrice de ces actions, dans des modes rythmés et auto-rythmés. Différentes stratégies d'amélioration des performances ont été mises en œuvre pour augmenter la performance (taux de classification) de l’ICO. Les données de ces deux études ont ensuite été utilisées dans l'étude 3 pour construire des classificateurs génériques qui pourraient éliminer la calibration hors ligne pour les futurs utilisateurs et raccourcir le temps de formation. Vingt participants sains différents ont participé aux études 1 et 2. Dans l'étude 1, les participants portaient un casque EEG et des marqueurs de capture de mouvement, avec un avatar affiché dans un casque de RV du point de vue de la première personne (1PP). Ils ont été invités à performer, à regarder ou à imaginer un seul pas en avant ou la marche vers l’avant (pour quelques secondes) sur le tapis roulant. Pour certains essais, l'avatar a fait un pas avec le membre controlatéral ou a arrêté de marcher avant que le participant ne s'arrête (rétroaction modifiée). Dans l'étude 2, les participants ont participé à un entrainement séquentiel de 4 jours pour contrôler la marche d'un avatar dans les deux modes de l’ICO. En mode rythmé, ils ont imaginé un seul pas en avant, en utilisant leur pied droit ou gauche, ou la marche vers l’avant . En mode auto-rythmé, il leur a été demandé d'atteindre une cible en utilisant l'imagerie motrice (IM) de plusieurs pas (mode de contrôle intermittent) ou en maintenir l'IM de marche vers l’avant (mode de contrôle continu). L'avatar s'est déplacé en réponse à deux classificateurs ‘Regularized Linear Discriminant Analysis’ (RLDA) calibrés qui utilisaient comme caractéristiques la densité spectrale de puissance (Power Spectral Density; PSD) des bandes de fréquences µ (8-12 Hz) sur la zone du pied du cortex moteur. Les classificateurs ont été recalibrés après chaque session. Au cours de l’entrainement et pour certains des essais, une rétroaction modifiée positive a été présentée à la moitié des participants, où l'avatar s'est déplacé correctement quelle que soit la performance réelle du participant. Dans les deux études, l'expérience subjective des participants a été analysée à l'aide d'un questionnaire. Les résultats de l'étude 1 montrent que les niveaux subjectifs d’incarnation sont fortement corrélés à la différence de la puissance de la synchronisation liée à l’événement (Event-Related Synchronization; ERS) sur la bande de fréquence μ et sur le cortex moteur et prémoteur entre les essais de rétroaction modifiés et réguliers. L'étude 2 a montré que tous les participants étaient capables d’utiliser le BCI rythmé et auto-rythmé dans les deux modes. Pour le BCI rythmé, la performance hors ligne moyenne au jour 1 était de 67±6,1% et 86±6,1% au jour 3, ce qui montre que le recalibrage des classificateurs a amélioré la performance hors ligne du BCI (p <0,01). La performance en ligne moyenne était de 85,9±8,4% pour le groupe de rétroaction modifié (77-97%) contre 75% pour le groupe de rétroaction non modifié. Pour le BCI auto-rythmé, la performance moyenne était de 83% en commande de commutateur et de 92% en mode de commande continue, avec un maximum de 12 secondes de commande. Les performances de l’ICO ont été améliorées par la rétroaction modifiée (p = 0,001). Enfin, les résultats de l'étude 3 montrent que pour la classification des initialisations des pas et de la marche, il a été possible de construire des modèles génériques à partir de données hors ligne spécifiques aux participants. Les résultats montrent la possibilité de concevoir une ICO ne nécessitant aucun entraînement spécifique au participant.

Page generated in 0.1451 seconds