• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 321
  • 204
  • 102
  • 38
  • 31
  • 18
  • 14
  • 9
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 847
  • 599
  • 283
  • 239
  • 148
  • 117
  • 101
  • 95
  • 83
  • 83
  • 74
  • 74
  • 73
  • 72
  • 72
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
651

Tratamento das equações de Eintein-Yang-Mills para soluções numericas com simetria esferica auto-gravitante e simetria axial no espaço-tempo de Minkowski / Set up of Einstein-Yang-Mills equation for numerical solutions of self-gravitating spherical symmetric fields and axial simmetric fields on Minkowski space-time

D'Afonseca, Luis Alberto 28 August 2007 (has links)
Orientador: Samuel Rocha de Oliveira / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-08T22:23:20Z (GMT). No. of bitstreams: 1 D'Afonseca_LuisAlberto_D.pdf: 4257675 bytes, checksum: 54debc66eff41b6c8b450adbcfc3bab6 (MD5) Previous issue date: 2007 / Resumo: Nesse trabalho delineamos a teoria clássica para o campo de Einstein-Yang-Mills e elaboramos um conjunto particular de equações para obtermos soluções numéricas. Estudamos dois casos com simetria espaço-temporal: Simetria esférica com campo auto-gravitante e simetria axial no espaço-tempo de Minkowski. Utilizamos métodos numéricos das linhas para fazer a evolução temporal dos campos discretizados. No caso com simetria esférica, os campos são discretizados por diferenças finitas e no caso da simetria axial comparamos as discretizações por métodos Pseudo-Espectrais e por diferenças finitas. Para evolução temporal um método auto-adaptativo de Runge-Kutta é empregado. Na simulação dos campos de Yang-Mills auto-gravitantes com simetria esférica mostramos a evolução da implosão e explosão de uma casca energética sem formação de buraco negro nem de corpo estável. No caso com simetria axial além da implosão e explosão de pulsos de cores diferentes dos campos de Yang-Mills, geramos também várias soluções dinâmicas em que vemos o transiente do intercâmbio de energia entre essas cores / Abstract: In this work we outline the classic theory of Einstein-Yang-Mills fields and work out a set of particular equations suited for numerical simulations. We consider two special cases with space-time symmetries: self-gravitating spherical symmetric and axially symmetric field on a Minkowski space-time. We use the numerical method of lines for time evolution of discretized fields. On the spherical symmetric case, the fields are discretized by finite differences and on the axial symmetric case we compare the field discretization by the pseudo-spectral method and finite differences method. For time stepping we use a self-adaptive Runge-Kutta method. In the simulation of Yang-Mills self-gravitating fields with spherical symmetry we show the evolution of implosion and explosion of a energetic shell without black hole or stable body formation. In the axial symmetric case besides implosion and explosion of pulses of different colours of Yang-Mills fields, we also generate several dynamic solutions that display the transient of the energy exchange among these colours / Doutorado / Fisica-Matematica / Doutor em Matemática Aplicada
652

Gravitational Waves and the Stability of Binary Systems

Pereira, Rheymisson January 2017 (has links)
This project contains an exposition of the basics of General Relativity up to the study of Gravitational Waves. The goal is to apply this theory to understand binary systems, how they generate gravitational waves and the energy they lose in doing so. Gravitational waves have been a topic of interest in relativity ever since their theoretical prediction in 1916. Now the interest in the subject has been renewed since LIGO's announcement of the first detection of gravitational waves, proving once again the power of General Relativity. This topic is very promising because of its implications in the future of astronomy and cosmology as a new method to obtain information about our universe.
653

Limite de champ moyen pour des modèles discrets et équation de Schrödinger non linéaire discrète / Mean field limit for discrete models and nonlinear discrete Schrödinger equation

Pawilowski, Boris 11 December 2015 (has links)
Dans une série de travaux Zied Ammari et Francis Nier ont développé des méthodes pour étudier la dynamique de champ moyen bosonique pour des états quantiques généraux pouvant présenter des corrélations. Ils ont obtenu des formules pour décrire la dynamique des corrélations, ou plus généralement des matrices densité réduites d'ordre arbitraire. Cette thématique a été largement développée ces dernières années. Norbert Mauser en a été un des contributeurs, ainsi que sur la notion de mesure de Wigner qui est la clé de l'analyse développée par Z. Ammari et F. Nier. En général, il est admis que l'asymptotique de champ moyen est une bonne approximation du problème à N particules quand N dépasse la dizaine. Cela concerne l'asymptotique de la matrice densité réduite à une particule qui ne décrit pas la dynamique des corrélations. Un objectif est de tester la validité de la dynamique de champ moyen pour les matrices densité réduites à 2-particules. Pour des tests numériques, les modèles discrets qui n'ont pas été vraiment traités en détail dans les travaux précédents de Z. Ammari et F. Nier semblent bien adaptés. La thèse comprendra donc plusieurs étapes: adapter les résultats précédents de Z. Ammari et F. Nier à des modèles discrets , développer des méthodes numériques pour des systèmes simples mais pertinents, permettant de valider l'approximation de champ moyen et les formules pour la dynamique des corrélations. Au niveau numérique, on utilise des schémas numériques symplectiques, développés spécifiquement ces dernières années pour la discrétisation des équations hamiltoniennes. Une dernière étape concerne la combinaison des deux asymptotiques, champ moyen et approximation des modèles continus par les modèles discrets. / In a serie of works Z. Ammari and F. Nier developed methods to study the dynamics of bosonic mean field for general quantum states which can present correlations. They obtained formulas to describe the dynamics of the correlations, or more generally reduced density matrices with an arbitrary order. This topic was widely developed these last years. N.J. Mauser was one of contributors, as well as on the notion of Wigner measure which is the key of the analysis developed by Z. Ammari and F. Nier. Generally, the mean field asymptotic is admitted is a good approximation of the N-body problem when N exceed about ten. It concerns the asymptotics of the reduced density matrices for one particle which does not describe the dynamics of the correlations. An objective is to test the validity of the mean field dynamics for reduced density matrices for 2 particles. For numerical tests, the discrete models which were not really handled in detail in the previous works of Z. Ammari and F. Nier seem adapted well. The thesis will thus include several steps: adapt the previous results from Z. Ammari and F. Nier to discrete models , develop numerical methods, for simple but relevant systems, allowing to validate the approximation of mean field and the formulas for the dynamics of the correlations. About numerics, symplectic numerical scheme are used, developed specifically these last years for the discretization of the hamiltonian equations. A last possible step concerns the combination of both asymptotics, that is mean field and approximation of the continuous models by the discrete models.
654

Machine Learning for Gravitational-Wave Astronomy: Methods and Applications for High-Dimensional Laser Interferometry Data

Colgan, Robert Edward January 2022 (has links)
Gravitational-wave astronomy is an emerging field in observational astrophysics concerned with the study of gravitational signals proposed to exist nearly a century ago by Albert Einstein but only recently confirmed to exist. Such signals were theorized to result from astronomical events such as the collisions of black holes, but they were long thought to be too faint to measure on Earth. In recent years, the construction of extremely sensitive detectors—including the Laser Interferometer Gravitational-Wave Observatory (LIGO) project—has enabled the first direct detections of these gravitational waves, corroborating the theory of general relativity and heralding a new era of astrophysics research. As a result of their extraordinary sensitivity, the instruments used to study gravitational waves are also subject to noise that can significantly limit their ability to detect the signals of interest with sufficient confidence. The detectors continuously record more than 200,000 time series of auxiliary data describing the state of a vast array of internal components and sensors, the environmental state in and around the detector, and so on. This data offers significant value for understanding the nearly innumerable potential sources of noise and ultimately reducing or eliminating them, but it is clearly impossible to monitor, let alone understand, so much information manually. The field of machine learning offers a variety of techniques well-suited to problems of this nature. In this thesis, we develop and present several machine learning–based approaches to automate the process of extracting insights from the vast, complex collection of data recorded by LIGO detectors. We introduce a novel problem formulation for transient noise detection and show for the first time how an efficient and interpretable machine learning method can accurately identify detector noise using all of these auxiliary data channels but without observing the noise itself. We present further work employing more sophisticated neural network–based models, demonstrating how they can reduce error rates by over 60% while also providing LIGO scientists with interpretable insights into the detector’s behavior. We also illustrate the methods’ utility by demonstrating their application to a specific, recurring type of transient noise; we show how we can achieve a classification accuracy of over 97% while also independently corroborating the results of previous manual investigations into the origins of this type of noise. The methods and results presented in the following chapters are applicable not only to the specific gravitational-wave data considered but also to a broader family of machine learning problems involving prediction from similarly complex, high-dimensional data containing only a few relevant components in a sea of irrelevant information. We hope this work proves useful to astrophysicists and other machine learning practitioners seeking to better understand gravitational waves, extremely complex and precise engineered systems, or any of the innumerable extraordinary phenomena of our civilization and universe.
655

On Stability and Evolution of Solutions in General Relativity

Taylor, Stephen M. 19 July 2007 (has links) (PDF)
This thesis is concerned with several problems in general relativity and low energy string theory that are pertinent to the time evolution of the gravitational field. We present a formulation of the Einstein field equations in terms of variational techniques borrowed from geometric analysis. These equations yield the evolution equations for the Cauchy problems of both general relativity and low energy string theory. We then proceed to investigate the evolutionary linear stability of Schwarzschild-like solutions in higher dimensional relativity called black strings. These objects are determined to be linearly unstable. This motivates a further stability analysis of the charged p-brane solutions of low energy string theory. We show that one can eliminate linear instabilities in p-branes for sufficiently large values of charge. We also consider the characteristic problem of general relativistic magnetohydrodynamics (GRMHD). We compute the eigenvalues and eigenvectors of GRMHD and establish degeneracy conditions. Finally, we consider the initial value problem for axisymmetric GRMHD. We formulate the general Einstein and MHD equations under the assumption of a stationary axisymmetric spacetime without assuming the circularity condition.
656

Hot Brownian Motion

Rings, Daniel 18 February 2013 (has links) (PDF)
The theory of Brownian motion is a cornerstone of modern physics. In this thesis, we introduce a nonequilibrium extension to this theory, namely an effective Markovian theory of the Brownian motion of a heated nanoparticle. This phenomenon belongs to the class of nonequilibrium steady states (NESS) and is characterized by spatially inhomogeneous temperature and viscosity fields extending in the solvent surrounding the nanoparticle. The first chapter provides a pedagogic introduction to the subject and a concise summary of our main results and summarizes their implications for future developments and innovative applications. The derivation of our main results is based on the theory of fluctuating hydrodynamics, which we introduce and extend to NESS conditions, in the second chapter. We derive the effective temperature and the effective friction coefficient for the generalized Langevin equation describing the Brownian motion of a heated nanoparticle. As major results, we find that these parameters obey a generalized Stokes–Einstein relation, and that, to first order in the temperature increment of the particle, the effective temperature is given in terms of a set of universal numbers. In chapters three and four, these basic results are made explicit for various realizations of hot Brownian motion. We show in detail, that different degrees of freedom are governed by distinct effective parameters, and we calculate these for the rotational and translational motion of heated nanobeads and nanorods. Whenever possible, analytic results are provided, and numerically accurate approximation methods are devised otherwise. To test and validate all our theoretical predictions, we present large-scale molecular dynamics simulations of a Lennard-Jones system, in chapter five. These implement a state-of-the-art GPU-powered parallel algorithm, contributed by D. Chakraborty. Further support for our theory comes from recent experimental observations of gold nanobeads and nanorods made in the the groups of F. Cichos and M. Orrit. We introduce the theoretical concept of PhoCS, an innovative technique which puts the selective heating of nanoscopic tracer particles to good use. We conclude in chapter six with some preliminary results about the self-phoretic motion of so-called Janus particles. These two-faced hybrids with a hotter and a cooler side perform a persistent random walk with the persistence only limited by their hot rotational Brownian motion. Such particles could act as versatile laser-controlled nanotransporters or nanomachines, to mention just the most obvious future nanotechnological applications of hot Brownian motion.
657

PLD-grown ZnO-based Microcavities for Bose–Einstein Condensation of Exciton-Polaritons

Franke, Helena 07 November 2012 (has links) (PDF)
Die vorliegende Arbeit behandelt die Herstellung und optische Untersuchung von Halbleiterheterostrukturen, genauer Mikrokavitäten, in denen ein Bose–Einstein Kondensat (BEK) von sogenannten Exziton-Polaritonen im Festkörper erzeugt und beobachtet werden soll. Diese Strukturen bestehen aus zwei hochreflektierenden Braggspiegeln (BS) und einer ZnO-Kavität als aktivem Material. Zunächst wurde die Abscheidung der BS hinsichtlich genauer Schichtdickenkontrolle und Reproduzierbarkeit verbessert. Um Kavitätsschichten hinreichender Qualität herzustellen, wurden mehrere Ansätze zur Optimierung dieser planaren Schichtabscheidung mittels gepulster Laserdeposition verfolgt. Dabei kamen Techniken, wie das Ausheizen der Proben oder deren Glättung durch Ionenstrahlbeschuß zum Einsatz, um die elektronischen Eigenschaften bzw. die Oberflächen der Kavitätsschichten erheblich zu verbessern. Desweiteren wurde erfolgreich ein Verfahren entwickelt, freistehende, nahezu einkristalline ZnO-Nanodrähte mit Braggspiegeln zu ummanteln. Alle hergestellten Strukturen wurden in ihren strukturellen Eigenschaften, speziell hinsichtlich ihrer Rauhigkeit und Kristallinität, verglichen und mittels orts- und/oder winkelaufgelöster Photolumineszenzspektroskopie sowie Reflexionsmessungen bezüglich ihrer optischen Eigenschaften untersucht. Dabei konnte in fast allen Proben die starke Kopplung, welche die Grundlage für ein BEK darstellt, gezeigt werden. Hinweise für eine höhere Kopplungsstärke in den Nanodraht-basierten Mikrokavitäten wurden gefunden. Der Nachweis von BEK bis nahe Raumtemperatur gelang an der vielversprechendsten planaren Probe, die einen Qualitätsfaktor von ca. 1000 aufweist. Die Eigenschaften des BEK wurden für verschiedene Temperaturen und Detunings untersucht. Es hat sich gezeigt, daß ein negatives Detuning unerläßlich für die Bildung eines BEK in ZnO-basierten Mikrokavitäten ist. Die Impulsraumverteilung der Kondensat-Polaritonen läßt auf ausgeprägte dynamische Eigenschaften dieser Teilchen bei tiefen Temperaturen schließen. / The present work covers the fabrication and optical investigation of semiconductor microcavities for Bose–Einstein condensation (BEC) of exciton-polaritons. These microcavities consist of highly reflective distributed Bragg reflectors (DBR) surrounding a ZnO-cavity as active medium. In the first step, the growth of DBRs was optimised with respect to exact thickness control and high reproducibility. For the active material, several growth strategies have been pursued, in order to optimise the conditions for the growth of planar thin films by pulsed laser deposition. Techniques like annealing or ion beam smoothing were successfuly applied in order to either improve the electronic properties or decrease the roughness of the ZnO-cavity layer. Furthermmore, a successful technology was developed in order to coat highly-crstalline free-standing ZnO nanowires with concentrical DBR shells. All samples have been investigated regarding their roughness and crystallinity as well as their optical properties. For the latter spatially and/or angular-resolved photoluminescence spectroscopy and reflection measurements have been carried out. Thereby, the strong coupling regime – being prerequisite for BEC – could be demonstrated in almost all of the synthesized structures. For the nanowire-based microcavities hints for an enhanced coupling strength have been found. In one of the planar samples, showing the high quality factor of 1000, the formation of BEC almost up to room temperature was observed and was studied as a function of temperature and detuning. Negative detuning was found to be mandatory for the formation of a BEC in ZnO-based microcavities. The distinct momentum- respective in-plane wavevector distribution of the condensate polaritons revealed a strong dynamic character of these particles at low temperatures.
658

Exciton-Polaritons in ZnO-based Microresonators: Dispersion and Occupation

Sturm, Chris 26 October 2011 (has links) (PDF)
Die vorliegende Arbeit behandelt die Dispersion von Exziton-Polaritonen in ZnO-basierten Mikroresonatoren, welche zum einen theoretisch bezüglich der Eigenschaften der reinen Kavitätsmoden und zum anderen experimentell mittels Photolumineszenz-Spektroskopie und Reflektionsmessungen untersucht wurden. Dabei wird besonders auf die Rolle der linearen Polarisation sowie auf die Besetzung der Exziton-Polaritonen-Zustände eingegangen. Dies ist von Interesse, da diese Mikroresonatoren vielversprechende Kandidaten für die Realisierung eines Exziton-Polariton Kondensates sind, welches ähnliche Eigenschaften wie das klassische Bose-Einstein Kondensat besitzt. Die Eigenschaften der Exzitonen-Polaritonen werden durch die der beteiligten ungekoppelten Exzitonen und Photonen bestimmt. Im Falle der Photonen hängen diese stark von der linearen Polarisation ab, da es sich bei der ZnO-Kavität um ein optisch anisotropes Material handelt. Mittels einer entwickelten Näherung für die Berechnung der Kavitätsmoden, welche die optische Anisotropie der Kavität sowie die endliche Ausdehnung der Spiegel berücksichtigt, konnte gezeigt werden, dass im Falle der hier verwendeten ZnO-Kavität die optische Anisotropie zu einer Reduktion der Energieaufspaltung zw. der s- und p-polarisierten Mode im sichtbaren Spektralbereich führt. Der allgemeine Fall einer optisch anisotropen Kavität wird ebenfalls diskutiert. In den untersuchten ZnO-basierten Mikroresonatoren konnte eine starke Wechselwirkung zwischen Exzitonen und Photonen bis zu einer Temperatur von T = 410 K beobachten werden. Dabei wurde eine maximale Kopplungsstärke von 55 meV bei T = 10 K ermittelt. Anhand des beobachteten Verlaufs der Dispersion der Exziton-Polaritonen konnten in einem Mikroresonator Hinweise für eine zusätzliche Kopplung zwischen gebundenen Exzitonen und Photonen gefunden werden. Des Weiteren zeigte die Dispersion der Exziton-Polaritonen eine starke Polarisationsabhängigkeit. Eine maximale Energieaufspaltung des unteren Zweiges für die beiden linearen Polarisationen von 6 meV bei einem starken negativen Detuning von -70 meV wurde beobachtet. Es wird gezeigt, dass diese hohe Energieaufspaltung einen großen Einfluss auf die Besetzung der Zustände der Exziton-Polaritonzweige hat. Unter Verwendung verschiedener Anregungsleistungen und einer keilartigen Kavität wurde der Einfluss des Detunings systematisch auf die Besetzung der Exziton-Polaritonzustände untersucht und diskutiert. Es konnte eine Voraussage für den optimalen Detuning – Temperaturbereich für eine mögliche Kondensation getroffen werden. Erste Beobachtungen eines Kondensates in einem der Resonatoren bestätigen die Ergebnisse der vorliegenden Arbeit.
659

Exciton-Polaritons in ZnO-based Microresonators: Dispersion and Occupation

Sturm, Chris 16 September 2011 (has links)
Die vorliegende Arbeit behandelt die Dispersion von Exziton-Polaritonen in ZnO-basierten Mikroresonatoren, welche zum einen theoretisch bezüglich der Eigenschaften der reinen Kavitätsmoden und zum anderen experimentell mittels Photolumineszenz-Spektroskopie und Reflektionsmessungen untersucht wurden. Dabei wird besonders auf die Rolle der linearen Polarisation sowie auf die Besetzung der Exziton-Polaritonen-Zustände eingegangen. Dies ist von Interesse, da diese Mikroresonatoren vielversprechende Kandidaten für die Realisierung eines Exziton-Polariton Kondensates sind, welches ähnliche Eigenschaften wie das klassische Bose-Einstein Kondensat besitzt. Die Eigenschaften der Exzitonen-Polaritonen werden durch die der beteiligten ungekoppelten Exzitonen und Photonen bestimmt. Im Falle der Photonen hängen diese stark von der linearen Polarisation ab, da es sich bei der ZnO-Kavität um ein optisch anisotropes Material handelt. Mittels einer entwickelten Näherung für die Berechnung der Kavitätsmoden, welche die optische Anisotropie der Kavität sowie die endliche Ausdehnung der Spiegel berücksichtigt, konnte gezeigt werden, dass im Falle der hier verwendeten ZnO-Kavität die optische Anisotropie zu einer Reduktion der Energieaufspaltung zw. der s- und p-polarisierten Mode im sichtbaren Spektralbereich führt. Der allgemeine Fall einer optisch anisotropen Kavität wird ebenfalls diskutiert. In den untersuchten ZnO-basierten Mikroresonatoren konnte eine starke Wechselwirkung zwischen Exzitonen und Photonen bis zu einer Temperatur von T = 410 K beobachten werden. Dabei wurde eine maximale Kopplungsstärke von 55 meV bei T = 10 K ermittelt. Anhand des beobachteten Verlaufs der Dispersion der Exziton-Polaritonen konnten in einem Mikroresonator Hinweise für eine zusätzliche Kopplung zwischen gebundenen Exzitonen und Photonen gefunden werden. Des Weiteren zeigte die Dispersion der Exziton-Polaritonen eine starke Polarisationsabhängigkeit. Eine maximale Energieaufspaltung des unteren Zweiges für die beiden linearen Polarisationen von 6 meV bei einem starken negativen Detuning von -70 meV wurde beobachtet. Es wird gezeigt, dass diese hohe Energieaufspaltung einen großen Einfluss auf die Besetzung der Zustände der Exziton-Polaritonzweige hat. Unter Verwendung verschiedener Anregungsleistungen und einer keilartigen Kavität wurde der Einfluss des Detunings systematisch auf die Besetzung der Exziton-Polaritonzustände untersucht und diskutiert. Es konnte eine Voraussage für den optimalen Detuning – Temperaturbereich für eine mögliche Kondensation getroffen werden. Erste Beobachtungen eines Kondensates in einem der Resonatoren bestätigen die Ergebnisse der vorliegenden Arbeit.
660

PLD-grown ZnO-based Microcavities for Bose–Einstein Condensation of Exciton-Polaritons

Franke, Helena 10 October 2012 (has links)
Die vorliegende Arbeit behandelt die Herstellung und optische Untersuchung von Halbleiterheterostrukturen, genauer Mikrokavitäten, in denen ein Bose–Einstein Kondensat (BEK) von sogenannten Exziton-Polaritonen im Festkörper erzeugt und beobachtet werden soll. Diese Strukturen bestehen aus zwei hochreflektierenden Braggspiegeln (BS) und einer ZnO-Kavität als aktivem Material. Zunächst wurde die Abscheidung der BS hinsichtlich genauer Schichtdickenkontrolle und Reproduzierbarkeit verbessert. Um Kavitätsschichten hinreichender Qualität herzustellen, wurden mehrere Ansätze zur Optimierung dieser planaren Schichtabscheidung mittels gepulster Laserdeposition verfolgt. Dabei kamen Techniken, wie das Ausheizen der Proben oder deren Glättung durch Ionenstrahlbeschuß zum Einsatz, um die elektronischen Eigenschaften bzw. die Oberflächen der Kavitätsschichten erheblich zu verbessern. Desweiteren wurde erfolgreich ein Verfahren entwickelt, freistehende, nahezu einkristalline ZnO-Nanodrähte mit Braggspiegeln zu ummanteln. Alle hergestellten Strukturen wurden in ihren strukturellen Eigenschaften, speziell hinsichtlich ihrer Rauhigkeit und Kristallinität, verglichen und mittels orts- und/oder winkelaufgelöster Photolumineszenzspektroskopie sowie Reflexionsmessungen bezüglich ihrer optischen Eigenschaften untersucht. Dabei konnte in fast allen Proben die starke Kopplung, welche die Grundlage für ein BEK darstellt, gezeigt werden. Hinweise für eine höhere Kopplungsstärke in den Nanodraht-basierten Mikrokavitäten wurden gefunden. Der Nachweis von BEK bis nahe Raumtemperatur gelang an der vielversprechendsten planaren Probe, die einen Qualitätsfaktor von ca. 1000 aufweist. Die Eigenschaften des BEK wurden für verschiedene Temperaturen und Detunings untersucht. Es hat sich gezeigt, daß ein negatives Detuning unerläßlich für die Bildung eines BEK in ZnO-basierten Mikrokavitäten ist. Die Impulsraumverteilung der Kondensat-Polaritonen läßt auf ausgeprägte dynamische Eigenschaften dieser Teilchen bei tiefen Temperaturen schließen. / The present work covers the fabrication and optical investigation of semiconductor microcavities for Bose–Einstein condensation (BEC) of exciton-polaritons. These microcavities consist of highly reflective distributed Bragg reflectors (DBR) surrounding a ZnO-cavity as active medium. In the first step, the growth of DBRs was optimised with respect to exact thickness control and high reproducibility. For the active material, several growth strategies have been pursued, in order to optimise the conditions for the growth of planar thin films by pulsed laser deposition. Techniques like annealing or ion beam smoothing were successfuly applied in order to either improve the electronic properties or decrease the roughness of the ZnO-cavity layer. Furthermmore, a successful technology was developed in order to coat highly-crstalline free-standing ZnO nanowires with concentrical DBR shells. All samples have been investigated regarding their roughness and crystallinity as well as their optical properties. For the latter spatially and/or angular-resolved photoluminescence spectroscopy and reflection measurements have been carried out. Thereby, the strong coupling regime – being prerequisite for BEC – could be demonstrated in almost all of the synthesized structures. For the nanowire-based microcavities hints for an enhanced coupling strength have been found. In one of the planar samples, showing the high quality factor of 1000, the formation of BEC almost up to room temperature was observed and was studied as a function of temperature and detuning. Negative detuning was found to be mandatory for the formation of a BEC in ZnO-based microcavities. The distinct momentum- respective in-plane wavevector distribution of the condensate polaritons revealed a strong dynamic character of these particles at low temperatures.

Page generated in 0.0684 seconds