11 |
Estudo de grafite natural através de espectroscopia Raman e transporte elétricoSantos, Henrique Ferreira dos January 2017 (has links)
Orientador: Prof. Dr. André Gustavo Scagliusi Landulfo / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Física, 2017.
|
12 |
Inkjet printing of carbon nanotubes for electronic applicationsMustonen, T. (Tero) 24 November 2009 (has links)
Abstract
In this thesis, preparation of carbon nanotube (CNT) inks and inkjet printing of aqueous dispersions of CNTs for certain electrical applications are studied. The nanotube inks prepared in this work are based on chemically oxidized CNTs whose polar side groups enable dispersion in polar solvents. Subsequent centrifugation and decanting processes are used to obtain stable dispersions suitable for inkjet printing. The inks are based on either carboxyl functionalized multi-walled carbon nanotubes (MWCNTs), carboxyl functionalized single wall carbon nanotubes (SWCNTs) or SWCNT-polymer composites.
The applicability of MWCNT inks is firstly demonstrated as printed patterns of tangled nanotube networks with print resolution up to ∼260 dpi and surface resistivity of ∼40 kΩ/□. which could be obtained using an ordinary inkjet office printer. In addition, MWCNT inks are found to exhibit spatial ordering in external magnetic fields due to entrapped iron catalyst nanoparticles in the inner-tubular cavity of the nanotubes. Ordering of nanotubes in the inks and in drying droplets placed in relatively weak magnetic fields (B ≤ 1 T) is demonstrated and studied.
The high electrical conductivity and optical transparency properties of SWCNTs are utilized for enhancing the conductivity of transparent poly(3,4-ethylenedioxythiophene):poly(styrenesulphonate) (PEDOT:PSS) films. Polymer-nanotube composite materials are inkjet printed on flexible substrates. It is demonstrated that incorporation of SWCNTs in the thin polymer films significantly increases the electrical conductivity of the film without losing the high transparency (> 90%). The structure of composite films is studied using atomic force microscopy (AFM).
The electronic properties of deposited random SWCNT networks are studied. The amount of deposited SWCNT is controlled by the inkjet printing technique. In dense networks the current-voltage behaviour is linear whereas for sparse films the behaviour is nonlinear. It is shown that the conduction path in dense films is through the metallic nanotubes, but in sparse films the percolation occurs through random networks of metallic and semiconducting SWCNTs having Schottky-type contacts. The existence of Schottky-junctions in the films is demonstrated with field-effect transistors (FET) on Si-chips and on polymer substrates. The latter is demonstrated as fully printed transistors using a single ink as a material source. FETs are further utilized as chemical-FET sensor applications. The performance of resistive CNT sensors and their comparisons with chem-FETs in terms of selectivity are studied for H2S gas.
|
13 |
Structure and photovoltaic properties of strongly correlated manganite/titanite heterojunctionsIfland, Benedikt 17 May 2018 (has links)
No description available.
|
14 |
Superconducting Effects in the Electrical Transport Properties of GraphitePrecker, Christian Eike 10 August 2021 (has links)
Supraleitung in Graphit ist kein neues Thema. Dieser Effekt wurde bereits in den 1960er Jahren in Interkalationsverbindungen von Graphit gefunden. Die Supraleitung in reinem Graphit wurde bereits vor etwa 50 Jahren beschrieben. Kürzlich wurden in zweischichtigem Graphen, in dem die Graphenschichten um einen 'magischen' Winkeln um die c Achse verdreht wurden, flache Bänder in der elektronischen Bandstruktur nachgewiesen, welche mit der Entstehung von Supraleitung zusammenhängen. Wir haben die elektrischen Transporteigenschaften in Graphitproben mit unterschiedlichen Elektrodenkonfigurationen untersucht. Wir haben den elektrischen Widerstand von hochgeordnetem natürlichem und synthetischem Graphit mit Elektroden auf der Oberseite der ab Basalebene und auch parallel zur c Achse mit hoher Präzision gemessen und den Einfluss der hochleitenden Stapelfehler untersucht, an denen, eingebettet zwischen den kristallinen Graphitschichten, 2D-Grenzflächen entstehen, die ebenfalls flache Bänder aufweisen. Die Existenz einer gut geordneten rhomboedrischen Graphitphase in allen gemessenen Proben wurde durch Röntgenbeugungsmessungen nachgewiesen. Die Grenzflächen mit der hexagonalen Phase stellen laut theoretischer Vorhersagen einen möglichen Ursprung für die Hochtemperatursupraleitung dar. Die experimentellen Ergebnisse liefern eindeutige Beweise für körnige Supraleitung in diesen Materialien, z. B. einen schrittweisen Temperaturübergang bei ~ 350 K, magnetische Irreversibilität, Zeitabhängigkeit nach einer Feldänderung, die mit dem eingeschlossenen Fluss und Flusskriechen übereinstimmt, und den teilweise abgestoßenen magnetischen Fluss, welcher in Magnetisierungsmessungen beobchtet werden kann. Die Lokalisierung der körnigen Supraleitung an diesen 2D-Grenzflächen verhindert die Beobachtung widerstandsfreier elektrischer Ströme oder eines vollständigen Meißner-Zustands. Der Grund ist, dass die körnige Supraleitung in abgegrenzten Regionen an den Grenzflächen entsteht, welche in eine Multigraphen-Halbleitermatrix eingebettet sind. In dieser Arbeit wird eine detaillierte Untersuchung des Magnetowiderstands in verschiedenen Arten von Graphitproben bei niedrigen und hoch gepulsten Magnetfeldern vorgestellt. / Superconductivity in graphite is not a new topic. Its existence goes back to the 1960s when this effect was found in intercalation compounds of graphite. Superconductivity in pure graphite was reported already around 50 years ago and recently proved in bi-layer graphene, related to 'magic' angles between the graphene layers, twisted around the c axis, with the electronic band structure exhibiting flat bands. We have studied electrical transport properties in graphite samples with different electrode configurations. Measuring with high precision, the electrical resistance of highly ordered natural and synthetic graphite, with electrodes placed on the top of the ab basal plane, and also parallel to the c axis, we investigated the influence of the highly conducting stacking faults, referred as 2D interfaces, embedded between the crystalline regions of graphite, which also exhibit flat bands. The existence of well ordered rhombohedral graphite phase in all measured samples has been proved by x-ray diffraction measurements, suggesting its interfaces with the hexagonal phase as a possible origin of high-temperature superconductivity, predicted by theoretical studies. The results provide clear evidence of granular superconductivity, e.g., a step-like transition in temperature at ~ 350 K, magnetic irreversibility, time dependence after a field change, consistent with trapped flux and flux creep, and the partial magnetic flux expulsion from magnetization measurements. The localization of the granular superconductivity at these 2D interfaces prevents the observation of a zero resistance state or a full Meissner state. The reason is that the superconducting distribution is a mixture of superconducting patches at the interfaces, and they are embedded in a multigraphene semiconducting matrix. A detailed study of the magnetoresistance in different kinds of graphite samples at low and high-pulsed magnetic fields is presented in this work.
|
15 |
Integrace nanostruktur do funkčních celků / Integration of nanostructures into functional devicesCitterberg, Daniel January 2019 (has links)
This master thesis is focused on characterization of electrical transport properties of one-dimensional nanostructures. First section of this work deals with theoretical description of the experimental approaches to realization of such measurements. This section involves also a detail discussion of preparation of contacts using e-beam lithography. Next, theoretical description of characterization of nanostructures using photoluminescence measurements is given. Second section describes practical application of the aforementioned electrical transport measurements. Presented results include transport and photoluminescence measurements of WS2 nanotubes, InAs and WO2.72 nanowires. The last section of this thesis deals with nanowire quantum well heterostructures. The section provides both a deeper theoretical view of the problem and results of the photoluminescence measurements are shown.
|
16 |
Teorie spinově závislého transportu v magnetických pevných látkách / Theory of spin-dependent transport in magnetic solidsWagenknecht, David January 2019 (has links)
of doctoral thesis Theory of spin-dependent transport in magnetic solids David Wagenknecht Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University 2019 Theoretical and ab initio description of realistic material behavior is complicated and combinations of various scattering mechanisms or temperature effects are often neglected, although experimental samples contain impurities and modern electronics work at finite temperatures. In order to remove these knowledge gaps, the alloy analogy model is worked out in this thesis and implemented within the fully relativistic tight- binding linear-muffin-tin orbital method with the coherent potential approximation. This first-principles framework is shown to be robust and computationally efficient and, consequently, employed to investigate bulk solids and their spintronic applications. Unified effect of phonons, magnons, and alloying gives agreement with literature for temperature-dependent electrical transport (longitudinal and anomalous Hall resistivities) and scattering mechanisms are explained from electronic structures. Moreover, novel data help to identify defects in real samples and experimentally hardly accessible quantities are presented, such as spin polarization of electrical current. Calculated results for both zero...
|
17 |
Electrical Transport And Low Frequency Noise In Graphene And Molybdenum DisulphideGhatak, Subhamoy 08 1900 (has links) (PDF)
This thesis work contains electrical transport and low frequency (1/f) noise measurements in ultrathin graphene and Molybdenum disulphide (MoS2) field effect transistors (FET). From the measurements, We mainly focus on the origin of disorder in both the materials.
To address the orgin of disorder in graphene, we study single and bilayer graphene-FET devices on SiO2 substrate. We observe that both conductivity and mobility are mainly determined by substrate induced long range, short range, and polar phonon scattering. For further confirmation, we fabricate suspended graphene devices which show extremely high mobility. We find that, in contrast to substrate-supported graphene, conductivity and mobility in suspended graphene are governed by the longitudinal acoustic phonon scattering at high temperature and the devices reach a ballistic limit at low temperature. We also conduct low frequency 1/f noise measurements, known to be sensitive to disorder dynamics, to extract more information on the nature of disorder. The measurements are carried out both in substrate-supported and suspended graphene devices. We find that 1/f noise in substarted graphene is mainly determined by the trap charges in the SiO2 substrate. On the other hand, noise behaviour in suspended graphene devices can not be explained with trap charge dominated noise model. More-over, suspended devices exhibit one order of magnitude less noise compared to graphene on SiO2 substrate. We believe noise in suspended graphene devices probably originate from metal-graphene contact regions.
In the second part of our work, We present low temperature electrical transport in ultrathin MoS2 fields effect devices, mechanically exfoliated onto Si/SiO2 substrate. Our experiments reveal that the electronic states in MoS2 are localized well up to the room temperature over the experimentally accessible range of gate voltage. This manifests in two dimensional (2D) variable range hopping (VRH) at high temperatures, while below ~ 30 K the conductivity displays oscillatory structures in gate voltage arising from resonant tunneling at the localized sites. From the correlation energy (T0) of VRH and gate voltage dependence of conductivity, we suggest that the charged impurities are the dominant source of disorder in MoS2. To explore the origin of the disorder, we perform temperature dependent I - V measurements at high source-drain bias. These measurements indicate presence of an exponentially distributed trap states in MoS2 which originate from the structural inhomogeneity. For more detailed investigation, we employ 1/f noise which further confirms possible presence of structural disorder in the system. The origin of the localized states is also investigated by spectroscopic studies, which indicate a possible presence of metallic 1T-patches inside semiconducting 2H phase. From all these evidences, we suggest that the disorder is internal, and achieving high mobility in MoS2 FET requires a greater level of crystalline homogeneity.
|
18 |
Silicon nanocrystals embedded in silicon carbide for tandem solar cell applicationsSchnabel, Manuel January 2014 (has links)
Tandem solar cells are potentially much more efficient than the silicon solar cells that currently dominate the market but require materials with different bandgaps. This thesis presents work on silicon nanocrystals (Si-NC) embedded in silicon carbide (SiC), which are expected to have a higher bandgap than bulk Si due to quantum confinement, with a view to using them in the top cell of a tandem cell. The strong photoluminescence (PL) of precursor films used to prepare Si-NC in SiC (Si-NC/SiC) was markedly reduced upon Si-NC formation due to simultaneous out-diffusion of hydrogen that passivated dangling bonds. This cannot be reversed by hydrogenation and leads to weak PL that is due to, and limited by, non-paramagnetic defects, with an estimated quantum yield of ≤5×10<sup>-7</sup>. Optical interference was identified as a substantial artefact and a method proposed to account for this. Majority carrier transport was found to be Ohmic at all temperatures for a wide range of samples. Hydrogenation decreases dangling bond density and increases conductivity up to 1000 times. The temperature-dependence of conductivity is best described by a combination of extended-state and variable-range hopping transport where the former takes place in the Si nanoclusters. Furthermore, n-type background doping by nitrogen and/or oxygen was identified. In the course of developing processing steps for Si-NC-based tandem cells, a capping layer was developed to prevent oxidation of Si-NC/SiC, and diffusion of boron and phosphorus in nanocrystalline SiC was found to occur via grain boundaries with an activation energy of 5.3±0.4 eV and 4.4±0.7 eV, respectively. Tandem cells with a Si-NC/SiC top cell and bulk Si bottom cell were prepared that exhibited open-circuit voltages V<sub>oc</sub> of 900 mV and short-circuit current densities of 0.85 mAcm<sup>-2</sup>. Performance was limited by photocurrent collection in the top cell; however, the V<sub>oc</sub> obtained demonstrates tandem cell functionality.
|
19 |
Design of carbon nanotube-based sensors for the detection of catalytic activityVanhorenbeke, Béatrice 08 1900 (has links)
Thèse réalisée en cotutelle avec l'Université catholique de Louvain, Belgique / Les nanotubes de carbone possèdent des propriétés uniques qui en font des matériaux prometteurs dans de nombreux domaines. En particulier, leur structure quasi-unidimensionnelle et leur rapport surface/volume élevé font de ces matériaux des candidats de choix pour leur utilisation comme senseurs. A ce jour, les études concernant l'utilisation des nanotubes de carbone pour la conception de senseurs se concentrent principalement sur la détection de gaz, de molécules biologiques ou chimiques. Dans le cadre de cette thèse, nous nous intéressons à l'utilisation des nanotubes de carbone comme senseurs pour détecter en temps réel une transformation chimique, au travers d'une réaction catalytique.
Pour ce faire, des catalyseurs supportés sur nanotubes de carbone sont préparés grâce à des méthodes de fonctionnalisation appropriées de ces matériaux. En pratique, nous développons dans ce travail deux approches distinctes pour la préparation de catalyseurs supportés sur nanotubes de carbone. D'une part, nous mettons au point une méthode de fonctionnalisation monovalente des nanotubes de carbone, permettant de déposer des nanoparticules métalliques à la surface des nanotubes en vue de la préparation de catalyseurs hétérogènes supportés. A cette fin, les nanotubes sont dans un premier temps fonctionnalisés par des sels de diazonium. Cette première étape permet d'établir un point d'accroche sur les nanotubes permettant une post-fonctionnalisation ultérieure, en vue de l'ancrage de clusters métalliques. Une étape d'activation thermique permet ensuite de former des nanoparticules métalliques, au départ de ces précurseurs moléculaires. D'autre part, un catalyseur homogène supporté est préparé via l'ancrage de complexes à base de Pd(0) sur des nanotubes de carbone fonctionnalisés de manière à présenter des liaisons triples. Pour ce faire, les nanotubes de carbone sont fonctionnalisés de façon divalente, par la réaction de Bingel-Hirsch. Cette approche divalente assure l'ancrage covalent des sites actifs, tout en préservant la conductivité électrique des nanotubes de carbone.
Quelle que soit l'approche envisagée, la préparation de ces catalyseurs est attentivement suivie par des méthodes classiques de caractérisation telles que la spectroscopie Raman, la spectroscopie des photoélectrons X et l'analyse thermogravimétrique. En outre, une caractérisation électrique est également effectuée à chaque étape de la préparation des catalyseurs, afin d'étudier l'influence des différentes étapes de fonctionnalisation sur les propriétés électriques du nanotube.
Ces matériaux sont ensuite testés en catalyse, pour la transformation hydrolytique du diméthylphénylsilane en diméthylphénylsilanol ou pour la réaction de couplage croisée de Suzuki-Miyaura, respectivement pour les catalyseurs hétérogènes et homogènes supportés. L'activité de ces catalyseurs, ainsi que leur recyclabilité, est étudiée grâce à un suivi réactionnel par chromatographie gazeuse.
Enfin, nous démontrons dans cette thèse la possibilité d'utiliser les nanotubes de carbone comme senseurs pour détecter in situ l'activité catalytique. A cette fin, des mesures électriques en temps réel sont enregistrées au cours de la réaction de catalyse. L'activité catalytique se traduit par des changements de la conductivité des nanotubes au cours du temps. / Due to their outstanding properties, carbon nanotubes are being considered as promising materials in various fields. Namely, their quasi-one-dimensionality and their high surface/volume ratio make them ideal candidates for sensing applications. To date, studies dealing with the use of carbon nanotubes in sensing mainly focus on gas, biological and chemical molecules detection. In this thesis, we aim to use carbon nanotubes as sensors for the real-time detection of a chemical transformation through a catalytic reaction.
In order to do this, carbon nanotube supported catalysts are prepared thanks to appropriate functionalization methods. In practice, we develop in this work two distinct approaches for the preparation of carbon nanotube supported catalysts. On one hand, we develop a monovalent functionalization pathway for the deposition of metallic nanoparticles on carbon nanotube surface. For this purpose, carbon nanotubes are first functionalized by diazonium salts. This first step allows to bind a tethering point for a subsequent post-functionalization. Metallic clusters are then coordinated on these functionalized moieties. A thermal activation step ensures the formation of metallic nanoparticles from these nanoparticle molecular precursors. On the second hand, a homogeneous supported catalyst is prepared by anchoring Pd(0) complexes on carbon nanotube surface. In order to do this, carbon nanotubes are divalently functionalized by Bingel-Hirsch reaction to present dangling triple bonds at their surfaces. This divalent approach ensures a covalent anchoring of the active sites on the nanotube surface, while preserving their electrical conductivity.
Whichever the considered approach, the catalyst preparation is carefully analyzed by common characterization techniques, such as Raman spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis. Moreover, the materials are also electrically characterized at each step of the catalyst preparation process. This electrical characterization allows to study the influence of the different steps of the functionalization strategy on the nanotube electrical properties.
These materials are then tested in catalysis, for the hydrolytic transformation of dimethylphenylsilane in dimethylphenylsilanol or for the Suzuki-Miyaura cross-coupling reaction, respectively for heterogeneous and homogeneous supported catalysts. The activity and recyclability of these catalysts is monitored by gas chromatography.
Finally, we demonstrate in this thesis the possibility of using carbon nanotubes as sensors for the in situ detection of catalytic activity. For this purpose, real-time electrical measurements are recorded during the catalytic reaction. The catalytic activity is revealed by fluctuations of the nanotube conductivity over time.
|
20 |
Resistance Fluctuations And Instability In Metal NanowiresBid, Aveek 08 1900 (has links)
The principal aim of this thesis is to study the electrical transport properties of metal nanowires. Specifically, we have focussed on investigating the resistance fluctuations of Ag and Cu nanowires of diameters ranging from 15nm to 200nm and studied the instabilities that set in when the diameter is reduced below a certain range.
The nanowires were grown electrochemically inside polycarbonate and alumina templates. X-ray diffraction studies on the samples showed the presence of a HCP 4H phase in the Ag nanowires in addition to the usual FCC phase, which is seen in bulk Ag. The relative ratios of these two phases were a maximum for nanowires of diameter 30nm. The X-ray diffraction studies also showed that the samples were of high chemical purity. TEM studies revealed that the wires are single crystalline in nature. Once the wires are released from the template, the wires of diameter 15nm were seen to break down spontaneously into globules due to Rayleigh instability. Wires of larger diameter tended to neck down to smaller radius but did not break down completely into globules.
Both the Ag and Cu nanowire arrays had a fairly linear temperature dependence of resistance down to about 100K and reached a residual resistance below 40-50K. The temperature dependence of resistance could be fitted to a Bloch-Grüneisen formula over the entire temperature range. We found that n = 5 gave the best fit for the wires of all diameters showing that the dominant contribution to the temperature dependence of the resistivity in theses nanowires come from electron-acoustic phonon interactions. The resistivities of the wires were seen to increase as the wire diameter was decreased. This increase in the resistivity of the wires could be attributed to surface scattering of conduction electrons.
In nanowires of diameter 15nm of both Ag and Cu, the relative variance of resistance fluctuations <(ΔR)2>/R2 showed a prominent peak at around ~ 220K for the Ag nanowire and ~ 260K for the Cu wire. Ag wires of diameter 20nm showed a much-reduced peak in noise at a somewhat higher temperature while this feature was completely absent in wires of larger diameter as also for the reference Ag film. The noise in wires of diameter larger than 20nm was similar to that of the reference film. For wires of diameter 15nm as we approach T*, the power spectral density showed a severe deviation from 1/f nature. We could establish that the extra fluctuation seen in the nanowires of the narrowest diameters could originate from the Rayleigh instability. The measured resistance fluctuation was found to have a magnitude similar to that estimated from a simple model of a wire showing volume preserving fluctuation.
In the temperature range T ≤ 100K we observed very large non-Gaussian resistance fluctuations in a narrow temperature range for Ag and Cu wires of diameter 30nm with the fluctuations becoming much smaller as the diameter of the wires deviated from 30nm. In wires of diameter larger than 50nm the noise was almost independent of temperature in this range. The power spectrum of the resistance fluctuations also developed a large additional low frequency component near TP. We could establish that the appearance of this noise at a certain temperature (~30 – 50K) is due to the onset of martensite strain accommodation in these nanowires.
To summarize, we measured the resistance and resistance fluctuations of Ag and Cu nanowires of diameters ranging from 15nm to 200nm in the temperature range 4.2-300K. The temperature dependence of resistance could be fitted to a Bloch-Grüneisen formula over the entire temperature range of measurement (4.2K-300K). The contribution of electron-phonon scattering to the resistivity was found to be similar to that of bulk. The defect free nature of our samples allowed us to identify two novel sources of noise in these nanowires. At high temperatures Rayleigh instability causes the noise levels in wires of diameter around 15nm to increase. At lower temperatures the formation of martensite state leads to an increase in noise in wires of small diameters.
|
Page generated in 0.052 seconds