• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 151
  • 115
  • 27
  • 8
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 340
  • 110
  • 86
  • 66
  • 59
  • 59
  • 52
  • 49
  • 48
  • 43
  • 35
  • 35
  • 33
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Stratégies bio-inspirées pour la réduction catalytique et la valorisation du dioxyde de carbone / Bio-inspired strategies for the catalytic reduction and valorization of carbon dioxide

Gotico, Philipp 20 September 2019 (has links)
La criticité du réchauffement climatique incite à chercher des solutions pour réduire les émissions de dioxyde de carbone (CO₂). Le développement de catalyseurs qui peuvent aider à capturer, activer, réduire et valoriser le CO₂ est au cœur de ce défi. Cette thèse a répondu à cet appel en développant des mimétismes moléculaires inspirés de la Nature, dans le cadre plus large de la photosynthèse artificielle. Au début il s'agissait de suivre le parcours d'un photon de lumière visible et de déterminer comment il peut réduire la molécule de CO₂. Ensuite afin de réaliser des catalyseurs plus efficaces, de nouvelles molécules ont été synthétisées en s’inspirant de l’enzyme CO déshydrogénase (CODH) qui présente des performances exceptionnelles pour la réduction du CO₂. Enfin, une autre propriété du CODH a conduit à une validation de principe pour la valorisation immédiate du CO photo-produit dans la synthèse des liaisons amides marqués, une caractéristique courante des médicaments. / The criticality of global warming urges for the advancement of science to reduce carbon dioxide (CO₂) emissions in the atmosphere. At the heart of this challenge is the development of sustainable catalysts that can help capture, activate, reduce, and eventually valorize CO₂. This PhD work tried to respond to this call by developing molecular mimics inspired by natural systems in the larger scheme of artificial photosynthesis. Firstly, it involved tracking the journey of a photon of visible light and how it is transformed to a reducing power able to reduce CO₂. Secondly, in search for more efficient and stable catalysts, new mimics were synthesized inspired by the exceptional performance of CO dehydrogenase enzymes (CODH) in reducing CO₂. Lastly, further understanding of CODH also led to a proof-of-concept that directly valorizes the photo-produced CO for the synthesis of isotopically-labelled amide bonds, a common motif in pharmaceutically-relevant drugs.
252

Development of Alternative Materials to Replace Precious Metals in Sustainable Catalytic Technologies

Jain, Deeksha January 2019 (has links)
No description available.
253

Design Principle on Carbon Nanomaterials Electrocatalysts for Energy Storage and Conversion

Zhao, Zhenghang 05 1900 (has links)
We are facing an energy crisis because of the limitation of the fossil fuel and the pollution caused by burning it. Clean energy technologies, such as fuel cells and metal-air batteries, are studied extensively because of this high efficiency and less pollution. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential in the process of energy storage and conversion, and noble metals (e.g. Pt) are needed to catalyze the critical chemical reactions in these devices. Functionalized carbon nanomaterials such as heteroatom-doped and molecule-adsorbed graphene can be used as metal-free catalysts to replace the expensive and scarce platinum-based catalysts for the energy storage and conversion. Traditionally, experimental studies on the catalytic performance of carbon nanomaterials have been conducted extensively, however, there is a lack of computational studies to guide the experiments for rapid search for the best catalysts. In addition, theoretical mechanism and the rational design principle towards ORR and OER also need to be fully understood. In this dissertation, density functional theory calculations are performed to calculate the thermodynamic and electrochemical properties of heteroatom-doped graphene and molecule-adsorbed graphene for ORR and OER. Gibb's free energy, overpotential, charge transfer and edge effect are evaluated. The charge transfer analysis show the positive charges on the graphene surface caused by the heteroatom, hetero-edges and the adsorbed organic molecules play an essential role in improving the electrochemical properties of the carbon nanomaterials. Based on the calculations, design principles are introduced to rationally design and predict the electrochemical properties of doped graphene and molecule-adsorbed graphene as metal-free catalysts for ORR and OER. An intrinsic descriptor is discovered for the first time, which can be used as a materials parameter for rational design of the metal-free catalysts with carbon nanomaterials for energy storage and conversion. The success of the design principle provides a better understanding of the mechanism behind ORR and OER and a screening approach for the best catalyst for energy storage and conversion.
254

C-H Functionalization by High-valent Formally Copper(III) Complexes

Bower, Jamey Kevin 07 September 2022 (has links)
No description available.
255

Electrochemically Driven Functionalization of Alkyl Halides

Truesdell, Blaise L. 07 September 2022 (has links)
No description available.
256

Hybrid Catalytic Systems for the Sustainable Reduction of Carbon Dioxide to Value-Added Oxygenates

Biswas, Akash Neal January 2023 (has links)
Atmospheric carbon dioxide (CO₂) concentrations have increased rapidly in recent decades due to the burning of fossil fuels, deforestation, and other industrial practices. The excessive accumulation of CO₂ in the atmosphere leads to global warming, ocean acidification, and other environmental imbalances, which may ultimately have wider societal implications. One potential solution to closing the carbon cycle is utilizing CO₂, rather than fossil fuels, as the carbon source for fuels and chemicals production. This lowers atmospheric CO₂ levels while simultaneously providing an economic incentive for capturing and converting CO₂ into more valuable products. This dissertation includes studies on three hybrid catalytic reactor systems coupling electrochemistry, thermochemistry, and plasma chemistry for the conversion of CO₂ into value-added oxygenates, such as methanol and C3 oxygenates (propanal and 1-propanol). First, a tandem two-stage system is described where CO₂ is electrochemically reduced into syngas followed by the thermochemical methanol synthesis reaction. The work here specifically focuses on the electrochemical CO₂ reduction reaction to produce syngas with tunable H₂/CO ratios. Using a combination of electrochemical experiments, in-situ characterization, and density functional theory calculations, palladium-, gold-, and silver-modified transition metal carbides and nitrides were found to be promising catalysts for enhancing electrochemical activity while reducing the overall precious metal loading. Second, another tandem two-stage system is demonstrated where CO₂ is electrochemically reduced into ethylene and syngas followed by the thermochemical hydroformylation reaction to produce propanal and 1-propanol. The CO₂ electrolyzer was evaluated with Cu catalysts containing different oxidation states and with modifications to the gas diffusion layer hydrophobicity, while the hydroformylation reactor was tested over a Rh₁Co₃/MCM-41 catalyst. The tandem configuration achieved a C₃ oxygenate selectivity of ~18%, representing over a 4-fold improvement compared to direct electrochemical CO₂ conversion to 1-propanol in flow cells. Third, a hybrid plasma-catalytic system is investigated where CO₂ and ethane are directly converted into multi-carbon oxygenates in a one-step process under ambient conditions. Oxygenate selectivity was enhanced at lower plasma powers and higher CO₂ to C₂H₆ ratios, and the addition of a Rh₁Co₃/MCM-41 catalyst increased the oxygenate selectivity at early timescales. Plasma chemical kinetic modeling, isotopically-labeled CO₂ experiments, and in-situ spectroscopy were also used to probe the reaction pathways, revealing that alcohol formation occurred via the oxidation of ethane-derived activated species rather than a CO₂ hydrogenation pathway. It is critical to assess whether the proposed CO₂ conversion strategies consume more CO₂ than they emit. A comparative analysis of the energy costs and net CO₂ emissions is conducted for various reaction schemes, including four hybrid pathways (thermocatalytic-thermocatalytic, plasma-thermocatalytic, electrocatalytic-thermocatalytic, and electrocatalytic-electrocatalytic) for converting CO₂ into C₃ oxygenates. The hybrid processes can achieve a net reduction in CO₂ provided that low-carbon energy sources are used, however further catalyst improvements and engineering optimizations are necessary. Hybrid catalytic systems can provide an alternative approach to traditional processes, and these concepts can be extended to other chemical reactions and products, thereby opening new opportunities for innovative CO₂ utilization technologies.
257

Fundamental Aspects of Electrocatalysis at Metal and Metal Oxide Electrodes

Chen, Youjiang January 2011 (has links)
No description available.
258

SYNTHESIS AND ELECTROCATALYSIS OF METAL NANOMATERIALS

Tang, Yongan 19 June 2014 (has links)
No description available.
259

Investigating the Electrochemical Conversion of Carbon Dioxide to Fuels

Billy, Joshua Thomas, Billy 24 May 2018 (has links)
No description available.
260

Investigation of Electronic Structure Effects of Transition Metal Oxides toward Water Oxidation and CO2 Reduction Catalysis

Fugate, Elizabeth Anne 01 September 2016 (has links)
No description available.

Page generated in 0.0152 seconds