• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 32
  • 17
  • 8
  • 5
  • 4
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 215
  • 93
  • 53
  • 46
  • 41
  • 38
  • 38
  • 34
  • 31
  • 30
  • 23
  • 20
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

The Effect of Epithelial-Mesenchymal Transition on Actin Cortex Mechanics and Cell Shape Regulation

Hosseini, Kamran 17 February 2021 (has links)
Most animal cells adopt an approximately spherical shape when entering mitosis. This process has been termed mitotic rounding. It ensures the correct morphogenesis of the mitotic spindle and, in turn, successful cell division. When cells acquire a round shape at the entry of mitosis, they need to mechanically deform the surrounding tissue to do so. Previous studies suggest that the forces necessary for this deformation emerge from the contractility of the mitotic actin cortex. In fact, at the onset of mitosis, cortical contractility was found to be upregulated giving rise to an increased cell surface tension which drives the mitotic cell into a spherical shape. In a growing tumor, an increasing cell density generates a compressive mechanical stress which would likely lead to an increasing mechanical obstacle for mitotic rounding. Indeed, mechanical confinement or external pressure have been shown to hamper cell proliferation in tumor spheroids. Thus, it has been hypothesized that the actin cortex of cancer cells exhibits oncogenic adaptations that allow for ongoing mitotic rounding and division inside tumors. In fact, it was shown that the human oncogene Ect2 contributes to mitotic rounding through RhoA activation and that Ras overexpression promotes mitotic rounding. Epithelial-mesenchymal transition (EMT) is a cellular transformation in which epithelial cells loose epithelial polarity and intercellular adhesiveness gaining migratory potential. EMT, a hallmark in cancer progression, is commonly linked to early steps in metastasis promoting cancer cell invasiveness. Moreover, EMT was connected to cancer stem cells and the outgrowth of secondary tumors, suggesting that EMT may also be important for cell proliferation in a tumor. In this work, I investigated the role of EMT in actin cortex mechanics and mitotic rounding. To assess cortex mechanics, I measured the mechanical properties of the actin cortex in mitosis, in particular cortical stiffness and contractility before and after EMT. Furthermore, I also determined the mechanical changes of the actin cortex of interphase cells upon EMT; mechanics of interphase cells may critically influence mitotic rounding as interphase cells are a major constituent of the surrounding of a mitotic cell which needs to be deformed in the process of rounding. For our cortex-mechanical measurements, I used an established dynamic cell confinement assay based on atomic force microscopy. I show striking cortex- mechanical changes upon EMT that are opposite in interphase and mitosis. They are accompanied by a strong change in the activity of the actomyosin master regulators Rac1 and RhoA. Concomitantly, I characterize cortex-mechanical changes induced by Rac1 and RhoA signaling. In particular, I show that Rac1 inhibition restores epithelial cortex mechanics in post-EMT cells. Furthermore, I give evidence that EMT, as well as Rac1 activity changes induce actual changes in mitotic rounding in spheroids embedded in mechanically confining, covalently crosslinked hydrogels. Overall, I give evidence that EMT-induced changes results in a softer and less contractile cortex in interphase and a stiffer and more contractile cortex in mitotic cells, and it correlates with increased proliferation in confined environment.:Summary Zusammenfassung Acknowledgements 1-Introduction 1.1-The actin cortex 1.1.1-Regulation of actin cortex polymerization 1.1.2-Rho-GTPases in actin cortex regulation 1.1.3-The actin cortex in cell shape regulation and mitotic rounding 1.1.4-Experimental approaches to measure actin cortex mechanics 1.1.5-AFM cell confinement assay – a new tool for actin cortex-mechanical measurements 1.2-Epithelial-mesenchymal transition in cancer progression and metastasis 1.2.1-EMT effects on cell proliferation 1.2.2-EMT effects on Rho-GTPases activities 1.2.3-EMT effects on transcription factors 1.3-Outline of the thesis 2-Pharmacological induction of EMT 3-Mechanical changes of actin cortex mechanics upon EMT 3.1-Cell volume change during AFM confinement 3.2-Interphase and mitotic actin cortex mechanical changes upon EMT 3.3- Rho-GTPases activity changes upon EMT 4- Molecular perturbations of the cortex and their impact on cortex mechanics 5-Mitotic rounding in confined cell spheroids before and after EMT 5.1-The effect of cortex regulators on confined spheroids upon EMT 6-Time-dependence of actin cortex mechanics in breast epithelial cells 6.1-Rheology of actin cortex as a thin active film 6.2-Viscoelasticity of the actin cortex in relation to malignancy 7-Discussion 8-Outlook 8.1-Mitosis duration and quiescence in confined spheroids 8.2-Signalling cascades that trigger EMT-induced cortex-mechanical phenotype 8.2-Membrane tension upon EMT 9-Bibliography 10-Appendix 10.1-Abbreviations 10.2-Symbols / Die meisten tierischen Zellen nehmen beim Eintritt in die Mitose eine annähernd kugelförmige Form an. Dieser Vorgang wird als mitotische Aufrundung bezeichnet. Sie sorgt für die korrekte Morphogenese der mitotischen Spindel und damit für eine erfolgreiche Zellteilung. Wenn Zellen beim Eintritt der Mitose eine runde Form annehmen, müssen sie das umgebende Gewebe mechanisch verformen. Frühere Studien legen nahe, dass die für diese Verformung erforderlichen Kräfte aus der Kontraktilität des mitotischen Aktin-Cortexes resultieren; zu Beginn der Mitose führt ein Anstieg der kortikalen Kontraktilität zu einer erhöhten Zelloberflächenspannung, die die mitotische Zelle in eine kugelförmige Form treibt. Bei einem wachsenden Tumor erzeugt eine zunehmende Zelldichte einen Kompressionsdruck, der vermutlich ein zunehmendes mechanisches Hindernis für die mitotische Aufrundung darstellt. Es wurde gezeigt, dass mechanische Begrenzung oder äußerer Druck die Zellproliferation in Tumorsphäroiden hemmen. Es wurde daher die Hypothese aufgestellt, dass der Aktinkortex von Krebszellen onkogene Anpassungen aufweist, die eine fortlaufende mitotische Aufrundung und Zellteilung innerhalb von Tumoren ermöglichen. Weiterhin wurde gezeigt, dass das humane Onkogen Ect2 durch RhoA-Aktivierung zur mitotischen Aufrundung beiträgt und dass die Überexpression von Ras die mitotische Aufrundung fördert. Die epithelial-mesenchymale Transition (EMT) ist eine zelluläre Transformation, bei der Epithelzellen die epitheliale Polarität und die interzelluläre Adhäsivität verlieren und Migrationspotential gewinnen. EMT, ein Kennzeichen für das Fortschreiten von Krebs, ist häufig mit frühen Schritten der Metastasierung und einer Steigerung der Invasivität von Krebszellen verbunden. Darüber hinaus wird die EMT mit Krebsstammzellen und der Entstehung von Sekundärtumoren in Verbindung gebracht, was darauf hindeutet, dass die EMT auch für die Zellproliferation in einem Tumor wichtig sein könnte. In dieser Arbeit wurde die Bedeutung der EMT für die Mechanik des Aktinkortex und die mitotische Aufrundung untersucht. Die mechanischen Eigenschaften des Zellkortexes, insbesondere die kortikale Steifheit und Kontraktilität, wurden in mitotischen und nicht-adhärenten Interphasezellen gemessen vor und nach der EMT. Die Mechanik von Interphasenzellen kann die mitotische Aufrundung entscheidend beeinflussen, da Interphasenzellen ein Hauptbestandteil der Umgebung einer mitotischen Zelle sind, die während des Aufrundungsprozesses deformiert werden muss. Für meine kortexmechanischen Messungen verwendete ich einen etablierten Assay, der auf Rasterkraftmikroskopie basiert. Ich konnte ausgeprägte kortexmechanische Veränderungen durch die EMT feststellen, die in Interphase und Mitose entgegengesetzt sind. Diese kortikalen Veränderungen gehen mit einer starken Modifikation der Aktivitäten der Actomyosin-Hauptregulatoren Rac1 und RhoA einher. Weiterhin konnte ich kortexmechanische Veränderungen charakterisieren, die durch Rac1- und RhoA- Signale induziert werden. Insbesondere zeige ich, dass die Rac1-Hemmung die epitheliale Kortexmechanik in Post-EMT-Zellen wiederherstellt. Darüber hinaus fand ich Hinweise darauf, dass EMT- und Rac1-Aktivitätsänderungen zu einer Änderung der mitotischen Aufrundung in eingebetteten Sphäroiden führen. Insgesamt zeigen die Daten in dieser Arbeit klare Hinweise darauf, dass EMT-induzierte Veränderungen zu einem weicheren und weniger kontraktilen Kortex in der Interphase und einem steiferen und kontraktileren Kortex in mitotischen Zellen führen und mit einer erhöhten Proliferation in mechanisch begrenzten Zellumgebungen korrelieren.:Summary Zusammenfassung Acknowledgements 1-Introduction 1.1-The actin cortex 1.1.1-Regulation of actin cortex polymerization 1.1.2-Rho-GTPases in actin cortex regulation 1.1.3-The actin cortex in cell shape regulation and mitotic rounding 1.1.4-Experimental approaches to measure actin cortex mechanics 1.1.5-AFM cell confinement assay – a new tool for actin cortex-mechanical measurements 1.2-Epithelial-mesenchymal transition in cancer progression and metastasis 1.2.1-EMT effects on cell proliferation 1.2.2-EMT effects on Rho-GTPases activities 1.2.3-EMT effects on transcription factors 1.3-Outline of the thesis 2-Pharmacological induction of EMT 3-Mechanical changes of actin cortex mechanics upon EMT 3.1-Cell volume change during AFM confinement 3.2-Interphase and mitotic actin cortex mechanical changes upon EMT 3.3- Rho-GTPases activity changes upon EMT 4- Molecular perturbations of the cortex and their impact on cortex mechanics 5-Mitotic rounding in confined cell spheroids before and after EMT 5.1-The effect of cortex regulators on confined spheroids upon EMT 6-Time-dependence of actin cortex mechanics in breast epithelial cells 6.1-Rheology of actin cortex as a thin active film 6.2-Viscoelasticity of the actin cortex in relation to malignancy 7-Discussion 8-Outlook 8.1-Mitosis duration and quiescence in confined spheroids 8.2-Signalling cascades that trigger EMT-induced cortex-mechanical phenotype 8.2-Membrane tension upon EMT 9-Bibliography 10-Appendix 10.1-Abbreviations 10.2-Symbols
82

Development of EMT components and reference grid in OpenModelica

Fernandez Horcajuelo, Alba January 2021 (has links)
Power systems simulation tools enable to study and evaluate the performance of electrical power systems in different scenarios. This allows the development and implementation of new solutions to the challenges electrical grids face nowadays. In this sense, electromagnetic transient (EMT) simulation provides detailed information on the behaviour of the different components involved in the system. Moreover, among the wide range of existing tools, those based in Modelica language present certain advantages for power system simulation, such as equation- based modeling and the possibility of working in open- source environments. This project presents the development of components and reference grid in EMT formalism in the open- source environment OpenModelica, based on Modelica language. With the purpose of power system simulation, electrical components have been modeled in OpenModelica and gathered in a library for EMT simulation The performance of the different components has been validated by comparing the results of the EMT simulation of a 3buses reference grid in different case studies in OpenModelica and other EMT- based software. Furthermore, the comparison has been also established with phasor simulation in OpenModelica, enabling the evaluation of the differences between phasor and EMT simulation. The results show the main advantages and drawbacks of working with OpenModelica regarding other simulation tools and the lack of information provided by the phasor simulation, particularly in the case of a fault event. Additionally, certain difficulties encountered when working with OpenModelica have also been identified. / Simulering av kraftsystem gör det möjligt att studera och utvärdera prestandan i olika scenarion. Genom detta kan utveckling och implementering av nya lösningar på de utmaningar som elnäten står inför framöver ske. Elektromagnetisk transient (EMT)simulering ger detaljerad information om beteendet hos de olika komponenterna i systemet. Bland de många befintliga verktygen innehåller de som är baserade på Modelica- språket dessutom vissa fördelar för kraftsystemsimulering, såsom ekvationsbaserad modellering och möjligheten att arbeta i miljöer med öppen källkod. Den här uppsatsen presenterar en utveckling av komponenter och testelnät i EMT- formalism i öppen källkodsmiljö OpenModelica, baserat på programmeringsspråket Modelica. Elektriska komponenter har modellerats i OpenModelica och samlats i ett bibliotek för EMT- simulering. Målet är en detaljerad simulering av elkraftsystem. Komponenternas prestanda har validerats genom att jämföra resultatet av EMT- simuleringen av ett 3bussreferensnät i olika fallstudier i OpenModelica och annan EMT- baserad programvara. Sedan har jämförelsen även utförts med simuleringar i fasorformalism i OpenModelica. Den här jämförelsen har också möjliggjort utvärderingen av skillnaderna mellan fasor och EMT- simulering. Resultaten visar de största fördelarna och nackdelarna med att arbeta med OpenModelica njämfört med andra simuleringsverktyg. De visar också bristen på information om fasorsimuleringen, särskilt i fallet med ett elektriskt fel. Dessutom har vissa svårigheter identifierats med att arbeta med OpenModelica.
83

Rôle d’une réponse hormonale glucocorticoïde dans le contrôle de la plasticité des cellules cancéreuses mammaires / A glucocorticoid-dependent metabolic program supports cancer stem cell properties in breast cancer

Nouri, Ebticem 17 March 2017 (has links)
Les cellules cancéreuses ayant des propriétés souches, appelées cellules souches cancéreuses (CSCs), sont au sommet de l'organisation hiérarchique des tumeurs et sont soupçonnées d'être responsable des rechutes et de la formation de métastases. Cependant, nous nous sommes demandé comment ces cellules sont-elles capables de supporter le stress métabolique lié à l'oncogène et de croitre dans un environnement nutritif défavorable distinct de celui d'une tumeur établie ? Nous avons mis en évidence dans ce travail le rôle de la réponse aux glucocorticoïdes dans le contrôle de la plasticité mammaire et l'induction d'une plasticité métabolique nécessaire au maintien du potentiel tumorigène des CSCs. Nous avons montré qu'en régulant la reprogrammation cellulaire via l'induction du gène MAFB, les glucocorticoïdes contrôlent le caractère souche des cellules épithéliales malignes en activant la voie de biosynthèse des hexosamines. L'efficacité anabolique de ces cellules est alors augmentée, favorisant le développement de la tumeur et des métastases. Ensemble, nos résultats suggèrent que l'inhibition de l'activité métabolique des glucocorticoïdes pourrait être une stratégie pour éliminer les CSCs et traiter les tumeurs mammaires / Cancer cells with stemness properties - generally designated cancer stem cells (CSCs) - are at the apex of the hierarchical organisation of tumours and are believed to drive tumour recurrence and metastasis formation. However, how they perform these neoplastic activities in a nutritive environment that is distinct from the one in an established tumour is unknown. Here, we unveil the prominent role of glucocorticoid activity in the control of mammary cancer cell plasticity and the induction of metabolic pliancy necessary for the tumorigenic potential of CSCs. By regulating MAFB-dependent cell reprogramming, glucocorticoids control stemness traits in malignant epithelial cells. As an integral part of this regulation, glucocorticoids activate the hexosamine biosynthetic pathway and rewire the metabolism of CSCs. The anabolic efficiency of these cells increases then, fostering tumour and metastasis development. Together, our findings suggest that inhibition of glucocorticoid metabolic activity could be an original strategy for CSC eradication and tumour treatment
84

The mesenchymal-like phenotype of metastatic breast cancer is maintained by the transcription factor RUNX1

Ariffin, Nur Syamimi January 2017 (has links)
Breast cancer is the most prevalent cancer in women in the UK with over 50,000 new cases diagnosed each year. Almost all breast cancer deaths are due to metastatic disease. The RUNX1-CBFbeta transcription factor complex has been implicated in the development of human breast cancer and recent evidence from our laboratory indicated that it might have a role in metastasis. The aim of this project was therefore to determine the role of the RUNX1 transcription factor in breast cancer metastasis. Initial experiments to knockdown RUNX1 by shRNA also decreased the expression of RUNX2. Therefore, due to the off-target effect of shRUNX1, CRISPR-Cas9n was used to establish a RUNX1-negative cell line by targeting the first exon of the RUNX1 gene. Migration and invasion capacity of the cells decreased in the absence of RUNX1 and it was comparable to the absence of RUNX2 and CBFbeta respectively, which are known to play roles in migration and invasion of MDA-MB-231 cells. The cells also formed spherical clusters in 3D culture which was associated with the changes in cell morphology from stellate to round shape in the absence of RUNX1. The expression of the metastasis-related genes MMP13, MMP9, OPN and SLUG also decreased in parallel with the loss of the mesenchymal-like phenotype whilst the expression of the epithelial markers cytokeratin, desmoplakin and E-cadherin increased concomitantly. Importantly, re-expression of RUNX1 in the RUNX1-negative cell lines using an inducible expression system rescued migration and invasion. Therefore, RUNX1 is required to maintain the mesenchymal-like phenotype of MDA-MB-231 cells and hence is important for the epithelial to mesenchyme transition (EMT), a key characteristic of metastatic cells. The transcription factor SLUG is a known regulator of EMT. Data obtained shows that RUNX1 down-regulates the expression of SLUG. ChIP analysis demonstrated that RUNX1 was bound to the SLUG promoter and RUNX1 was subsequently shown to activate the promoter activity. Finally, experiments to inhibit the activity of the RUNX transcription factors pharmacologically showed changes in cell differentiation and also affected cell viability, possibly by off-target effects. Taken together, data presented in this work demonstrates that RUNX1 is required for EMT in the metastatic breast cancer cells and it is therefore a potential therapeutic target to prevent breast cancer metastasis.
85

Caractérisation de l'axe intégrine α5β1/protéine p53 dans les gliobastomes humains : application à une thérapie ciblée anti-tumorale / Characterization of the α5β1 integrin / p53 protein axis in human glioblastoma : application to a targeted anti-cancer therapy

Renner, Guillaume 30 September 2016 (has links)
Les intégrines sont des protéines transmembranaires, formées d’une sous-unité α et d’une sous-unité β, qui sont impliquées dans de nombreuses caractéristiques du cancer. Mes travaux de thèses ont montré que l’axe intégrine α5β1/AKT est impliqué dans la résistance à l’apoptose des cellules de glioblastome et dans leur migration. L’inhibition fonctionnelle de l’intégrine α5β1 associée à la réactivation de p53 sensibilise les cellules de glioblastome à l’apoptose. Mes résultats ont mis en évidence que les protéines anti-apoptotiques PEA-15 et Survivine sont deux intervenants majeurs dans cette résistance à l’apoptose. La migration dépendante de l’intégrine α5β1 implique la β-caténine. Les résultats obtenus par ce travail de thèse, donnent, par conséquent, des arguments supplémentaires en faveur de l’implication de l’intégrine α5β1 dans l’agressivité des glioblastomes. Ces résultats permettent également de proposer de nouvelles cibles thérapeutiques ainsi que des biomarqueurs pertinents pour stratifier les patients potentiellement répondeurs à une stratégie anti-intégrine. / Integrins are αβ membrane localised protein heterodimers involved in numerous hallmarks of cancer. My PhD thesis showed that the integrin α5β1/AKT axis is implicated in glioblastoma cells resistance to apoptosis and migration. The inhibition of α5β1 integrin oncogenic pathway sensitizes glioma cells to p53-reactivation dependent apoptotic cues. My results showed that PEA-15 and Survivin are two anti-apoptotic proteins involved in the resistance to apoptosis. α5β1 integrin dependent migration involves the β-catenin pathway. My results confirm that α5β1 integrin has to be considered as an important player in glioblastoma aggressiveness and resistance to therapy. The results of my thesis also suggest new therapeutic targets and pertinent biomarkers for glioblastoma patient stratification.
86

Deeper insights into the deleterious roles of ZNF217 in tumorigenesis and the identification of a novel and functional interplay between ZNF217 and ERalpha in breast cancer / Rôle délétère de ZNF217 dans la tumorigenèse mammaire et identification d'une coopération existant entre ZNF217 et ERalpha

Nguyen, Thanh Nhan 20 December 2013 (has links)
ZNF217 est un oncogène potentiel codant pour un facteur de transcription Krüppel-like. Cette étude vise à explorer le rôle délétère et la valeur pronostique de ZNF217 dans le cancer du sein. Nos résultats ont montré que : (i) des niveaux d'expression élevés de ZNF217 (tant au niveau de l'ARNm qu'au niveau protéique) sont associés à un mauvais pronostic chez les patientes atteintes d'un cancer du sein, et plus particulièrement dans les cancers du sein de type ER+/Luminaux/Luminaux A ; (ii) ZNF217 induit la transition épithélio mésenchymateuse (EMT) dans les cellules épithéliales mammaires humaines via la voie de signalisation du TGF-beta ; (iii) ZNF217 induit un phénotype agressif dans les cellules cancéreuses mammaires se traduisant in vitro par la stimulation de la croissance indépendante de l'ancrage, de la migration et de l'invasion cellulaire ; (iv) ZNF217 stimule la croissance tumorale et le développement spontané de métastases chez la souris ; (v) ZNF217 se lie à ERalpha et augmente l'activité transcriptionnelle ligand-dépendante de ce dernier en favorisant le recrutement d'ERalpha sur les éléments de réponse aux oestrogènes (EREs) ; (vi) ZNF217 stimule la formation de mammosphères dans des lignées cellulaires de cancer du sein ER– ou ER+ ; (vii) ZNF217 induit la résistance à l'hormonothérapie (tamoxifène) dans des cellules cancéreuses mammaires ER+ ; (viii) des niveaux élevés d'expression de ZNF217 sont associés à un mauvais pronostic en terme de survie sans récidive chez les patientes atteintes d'un cancer du sein et traitées par hormonothérapie uniquement. Nos résultats suggèrent que l'expression de ZNF217 représente un nouveau et puissant biomarqueur pronostique dans le cancer du sein ER+/Luminal/Luminal A, permettant la re-stratification de ces cancers du sein dits « de bon pronostic », pour lesquels il n'existe pas à l'heure actuelle de biomarqueurs permettant de les identifier. En conclusion, ZNF217 représente une nouvelle cible thérapeutique pour le traitement personnalisé des patientes atteintes d'un cancer du sein et exprimant de forts niveaux d'expression de ZNF217, en particulier les patientes ER+/ZNF217+ / ZNF217 is a candidate oncogene encoding for a Krüppel-like transcription factor. This study aims at exploring deeper insights on deleterious roles of ZNF217 and the prognostic significance of ZNF217 expression in breast cancers. We found that: (i) high levels of ZNF217 expression (at both mRNA and protein levels) are associated with poor prognosis in breast cancer patients, more particularly in ER+/Luminal/Luminal A breast cancers; (ii) ZNF217 induces epithelial-mesenchymal transition (EMT) in human mammary epithelial cells via the TGF-beta-activated Smad signaling pathway; (iii) in vitro ZNF217 stimulates several aggressive phenotypes in breast cancer cells, including anchorage-independent growth, cell migration and invasion; (iv) ZNF217 stimulates tumor growth and promotes the development of metastases in vivo; (v) ZNF217 binds with ERalpha and enhances 17beta- estradiol (E2)-induced ERalpha transactivation by increasing the recruitment of ERalpha to estrogen-responsive elements (EREs); (vi) ZNF217 increases mammosphere formation in ER– or ER+ breast cancer cell lines; (vii) ZNF217 confers resistance to endocrine therapy (tamoxifen) in ER+ breast cancer cells, and (viii) high levels of ZNF217 expression are associated with shorter relapse-free survival (RFS) in breast cancer patients treated with endocrine therapy only. Our findings suggest that ZNF217 expression represents a novel and powerful prognostic biomarker in ER+/Luminal/Luminal A breast cancers, allowing the re-stratification of these “good prognosis” breast cancers, which are currently not further classified by any other biomarkers available. In conclusion, ZNF217 could be a potential therapeutic target for a personalized treatment strategy in patients overexpressing ZNF217, in particular in ER+/ZNF217+ patients
87

Identification des fonctions oncosuppressives de TIF1γ (Transcriptional Intermediary Factor 1 γ) / Identification of TIF1γ oncosuppressive functions (Transcriptional Intermediary Factor 1γ)

Pommier, Roxane 17 December 2014 (has links)
TIF1γ est une protéine nucléaire de 1127 acides aminés possédant deux activités : une activité d'E3-ubiquitine ligase et des fonctions de régulateur transcriptionnel. TIF1γ exerce majoritairement ses fonctions dans les processus de développement embryonnaire et de différenciation cellulaire, notamment via son implication dans la voie de signalisation du TGFβ. Le rôle anti-tumoral de TIF1γ a été mis en évidence dans plusieurs modèles murins et son expression est diminuée dans de nombreuses tumeurs humaines de diverses origines tissulaires. Néanmoins, les mécanismes moléculaires et cellulaires par lesquels TIF1γ exerce ses fonctions oncosuppressives sont méconnus. Dans ces travaux, nous avons pu mettre en évidence le rôle inhibiteur de TIF1γ sur la transition épithélio-mésenchymateuse (EMT, Epithelial-to- Mesenchymal Transition) médiée par le TGFβ in vivo, permettant ainsi de limiter les propriétés agressives des cellules tumorales. De plus, nous avons décrit l'implication de TIF1γ dans la progression de la mitose et le point de contrôle du fuseau mitotique : les cellules n'exprimant plus TIF1γ présentent de nombreuses anomalies nucléaires ainsi qu'une forte aneuploïdie associée à une résistance aux agents ciblant les microtubules, molécules classiquement utilisées en chimiothérapie. De plus, nous avons pu corréler la faible expression de TIF1γ à une augmentation de l'instabilité chromosomique dans différentes tumeurs humaines. Ainsi, nos travaux ont permis de mettre en évidence le phénotype cellulaire induit par la perte de TIF1γ dans les cellules tumorales : instabilité chromosomique, résistance aux traitements chimiothérapeutiques et acquisition de propriétés invasives / TIF1γ / TRIM33 (Transcriptional Intermediary Factor 1γ / TRIpartite Motif-containing 33) is a 1,127 amino acids nuclear protein with two biochemical activities: an E3-ubiquitin ligase activity and transcriptional regulatory functions. TIF1γ is ubiquitously expressed in many organisms and exerts its functions mainly in the processes of embryonic development and cell differentiation, particularly through its involvement in the TGFβ signaling pathway. The oncosuppressive functions of TIF1γ have been demonstrated in several mouse models and its expression is reduced in many human tumors of various tissue origins. Nevertheless, the molecular and cellular mechanisms driving TIF1γ anti-tumoral activities are unknown. In this work, we highlight its inhibitory role on TGFβ-mediated EMT (Epithelial-to-Mesenchymal Transition) in vivo, thus limiting the aggressive properties of tumor cells. In addition, we describe TIF1γ involvement in mitotic progression and the Spindle Assembly Checkpoint (SAC): TIF1γ deleted cells display many nuclear abnormalities, aneuploidy and resistance to spindle microtubule-disrupting agents, which are drugs classically used in chemotherapeutic treatments. Finally, we correlated the low expression level of TIF1γ to an increased rate of chromosomal instability in different human tumors. Thus, our work has highlighted the tumor suppressor role of TIF1γ: its deletion in tumor cells induce chromosomal instability, resistance to chemotherapeutic treatments and acquisition of invasive properties
88

Cellular interdependence and collective aspects of the epithelial phenotype : a quantitative and geometric analysis using optical gene activation / Interdépendance cellulaire et aspects collectifs du phénotype épithélial : une étude quantitative et géométrique par induction optique de gènes

Miquel, Perrine 16 November 2016 (has links)
L’ensemble des tissus et des organismes vivants sont constitués de cellules dans lesquelles un certain nombre de décisions phénotypiques sont prises : division, différentiation, apoptose ou encore transformation. La biologie cellulaire s’est principalement concentrée sur la compréhension des déterminants moléculaires internes de ces décisions, mais il est important de considérer aussi l’existence de déterminants externes provenant des interactions intercellulaires qui sont essentielles à l’émergence de systèmes multicellulaires coordonnés. La compétition entre les déterminants internes et les déterminants externes est un aspect fondamental de la sociologie des communautés cellulaire menant à de possibles situations hautement individualisées ou, au contraire, à un effet collectif dominant. Ce travail de thèse a eu pour but de mettre en place une méthode permettant de mesurer la contribution relative de ces deux types de déterminants en les mettant en opposition. Pour cela, la stabilité collective d’un épithélium in vitro a été mise à l’épreuve grâce à l’induction hétérogène de la transition épithelio-mesenchymateuse (EMT) par le biais de la photoactivation du facteur de transcription Snail1. Les résultats principaux montrent que la réponse transcriptionelle de cellules induites à l’EMT dépend de la présence, ou non, de cellules avoisinantes non-induites. De la même manière, les cellules non-induites répondent de façon transcriptionelle à la présence de cellules induites. Ces effets de control mutuels introduisent la notion que la géométrie de la distribution d’une cause moléculaire donnée peut influencer la conséquence de cette même cause. Notre travail ouvre de nouvelle possibilités pour l’étude de la sociologie de communautés cellulaires hétérogènes, et une meilleure compréhension de phénomènes importants tel la suppression phénotypique ou encore les premiers instants de la carcinogenèse. / Tissues and organisms are built from cells in which important phenotype decisions are made: division, differentiation, apoptosis, and transformation. Cell biology has strongly focused on deciphering the internal molecular determinants of these decisions, but external information originating from intercellular interactions are key elements to coordinate multicellular physiology. The extent to which internal determinants dominate over external determinants or vice versa, is an essential feature of the sociology of cell communities, with possibly strong individualistic situations, or dominant collective effect. The present work was designed to set-up a method for assessing the relative contribution of internal vs. external determinant, by opposing these two classes of inputs. This is achieved by challenging the collective stability of an in vitro epithelium using the heterogeneous induction of the epithelial-to-mesenchymal transition (EMT) via the photoactivation of Snail1. The key results show that the transcriptional response of EMT-induced cells depends on the presence of non-induced cells in the culture. Conversely non-induced cells respond to the presence of induced cells. These mutual control effects lead to the notion that the geometry underlying the distribution of a given molecular cause strongly influences its consequence. Our work opens new perspectives for studying the sociology of heterogeneous cell communities, and better understand important phenomena such as phenotype suppression and or the onset of carcinogenesis.
89

Arsenic and Olfactomedin-1 Regulation of Epithelial to Mesenchymal Cell Transition (EMT) in Heart Valve Development

Lencinas Sanabria, Alejandro January 2012 (has links)
This dissertation centers on the study of epithelial to mesenchymal cell transition (EMT) in the heart model of valve development. EMT is a process used by specific cells to invade adjacent matrix in order to differentiate into a three-dimensional structure. The first section of the project includes a study on the effects of inorganic arsenic on EMT and therefore the environmental concerns produced by deleterious effects on EMT. The second section focuses on the discovery of an intrinsic regulator of EMT, olfactomedin-1 (OLFM1). The discovery of a novel regulator of EMT in the atrioventricular canal is interesting, by itself, as it allows us to better understand the intrinsic molecular regulation of EMT in valve formation of the heart. The activity of this protein, as a regulator of cell invasion, identifies an important checkpoint in EMT. Because OFLM1 is conserved across many species, including humans, it may be a common or shared regulator of all types of EMT including cancer. Therefore, OLFM1 represents a promising new target for an anti-cancer agent as well as a potential clinical inducer of EMT to repair congenital heart disease that include valve defects.
90

Regulation of Phenotypic Plasticity in Triple-Negative Breast Cancer

D'Amato, Nicholas January 2011 (has links)
<p>Breast cancers with a basal-like gene signature are primarily triple-negative, are frequently metastatic, and carry the worst prognosis. Basal-like breast cancers are frequently enriched for markers of breast cancer stem cells as well as markers of epithelial-mesenchymal transition (EMT). While EMT is generally thought to be important in the process of metastasis, direct in vivo evidence of EMT in human disease remains rare. Here we report a novel model of human triple-negative breast cancer, the DKAT cell line, which was isolated from an aggressive, treatment-resistant triple-negative breast cancer that demonstrated morphological and biochemical evidence of epithelial-mesenchymal plasticity in the patient.</p><p>In culture, the DKAT cell line exhibits a basal epithelial phenotype under normal culture conditions in serum-free MEGM, and can undergo a reversible EMT in response to serum-containing media, a unique property among the breast cancer cell lines we tested. This EMT is marked by increased expression of the transcription factor Zeb1, and Zeb1 is required for the enhanced migratory ability of DKAT cells in the mesenchymal state. Additionally, we find that expression of the cytokine IL-6 is dramatically increased in mesenchymal DAKT cells, and blocking IL-6 signaling reduces expression of Zeb1. DKAT cells also express progenitor-cell markers, and single DKAT cells are able to generate tumorspheres containing both epithelial and mesenchymal cell types. In vivo, as few as ten DKAT cells are capable of forming xenograft tumors which display a range of epithelial and mesenchymal phenotypes. Finally, we also show evidence of vimentin expression in mammary epithelial cell clusters from asymptomatic women at high risk for breast cancer, suggesting that changes characteristic of epithelial-mesenchymal plasticity may be inherent to some breast cancers from their earliest stages.</p><p>Our results provide evidence that the aggressive behavior of a subset of triple-negative breast cancers is driven by inherent epithelial-mesenchymal plasticity. The novel finding that IL-6 regulates Zeb1 expression adds further rationale for the development of anti-IL-6 therapeutics, which will have the potential to target pathways at the intersection of metastasis and tumor recurrence. The DKAT cell line represents a novel model for further study of the molecular mechanisms that regulate plasticity in highly aggressive triple-negative breast cancers. An improved understanding of the pathways that are critical for this plasticity may lead to improved treatment options for highly aggressive and deadly breast cancers.</p> / Dissertation

Page generated in 0.0509 seconds