• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 68
  • 21
  • 13
  • 12
  • 10
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Vibroacoustic Response of the Tympanic Membrane to Hyoid-borne Sound Generated During Echolocation in Bats

Snipes, Chelsie 01 May 2023 (has links) (PDF)
The hyoid apparatus in laryngeally echolocating bats forms a mechanical connection between the larynx and auditory bullae and has been hypothesized to transfer the outgoing echolocation call to the middle ear during echolocation call emission. We used µCT data to build models of the hyoid apparatus and middle ear from six species of bats and used finite element modeling (FEM) to measure the vibroacoustic response of the tympanic membrane due to hyoid-borne sound generated during echolocation. We found that hyoid-borne sound in all six species stimulated the eardrum within a range likely heard by bats. Although there were minor differences at frequencies above 60kHz, there were no obvious morphological explanations to account for it. This suggests that variation in the morphology of the hyoid apparatus in laryngeally echolocating bats is likely driven by other functions associated with the hyoid.
42

Acoustic behaviour of small cetaceans in northwest Peninsular Malaysia in relation to behavioural, environmental and anthropogenic factors / マレーシア半島北西部における小型鯨類の発声と行動、環境及び人為的要因の関係

Bono, Saliza binti Awang 24 November 2022 (has links)
京都大学 / 新制・課程博士 / 博士(農学) / 甲第24298号 / 農博第2527号 / 新制||農||1095(附属図書館) / 学位論文||R4||N5421(農学部図書室) / 京都大学大学院農学研究科応用生物科学専攻 / (主査)教授 三田村 啓理, 教授 益田 玲爾, 准教授 市川 光太郎 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
43

Spectral and temporal characteristics of echolocation calls in pregnant and lactating big brown bats / Echolocation in pregnant and lactating big brown bats

Clarke, Alexa January 2023 (has links)
While they are pregnant and rearing pups, bats continue to leave their roosts to forage for food. Many bats use echolocation vocalizations as part of this process. Other mammalian species including primates experience changes in vocal characteristics during pregnancy and lactation. As echolocation is a vital tool for spatial navigation and prey detection in most bats, investigating echolocation characteristics during pregnancy through lactation may provide new insight into how reproduction, pregnancy and pup rearing influence vocalizations. We measured changes in mass and recorded echolocation calls of pregnant (n = 21) and non-pregnant (n = 2) female wild-caught big brown bats (Eptesicus fuscus) released by hand into roost emergence-like flight. Recording began ~15 days prepartum and ended when the last bat reached 34 days postpartum, when pups were expected to be weaned. Analyses were completed using MATLAB and R, primarily with repeated measures ANOVAs focused on echolocation calls present in the ~562 ms before and ~562 ms after take-off. Based on vocal changes experienced by humans during pregnancy and post-birth, correlations found between bat echolocation call characteristics and the effects of differences in mass on bat echolocation, we predicted that female bats in late-stage pregnancy would emit calls of shorter duration, longer pulse interval, narrower bandwidth, and lower centroid frequency compared to calls emitted by the same bat post-parturition and compared to non-pregnant bats, while source level remained unchanged. We found that pulse interval and source level did not change while pregnant/lactating or control bats were in flight, and that increases in call duration and decreases in centroid frequency and bandwidth in flight began in pregnancy and continued through the lactation period while remaining unchanged for the control bats. / Thesis / Master of Science (MSc) / The goals of this study were to see if big brown bats change the way that they echolocate while they are pregnant and/or nursing pups, and what changes occur. We did this by recording the vocal sounds bats made while they were pregnant and after they had given birth, and looking to see if there were any changes in the duration of echolocation calls, the time between individual sounds, the range of sound frequencies in each call, the central sound frequency in each call, and each call’s sound pressure level over this time and compared to non-pregnant/nursing female big brown bats. We found that echolocation call duration increases over pregnancy and nursing pups, while frequency range and the centre frequency decreases.
44

SPECPAK: An integrated acquisition and analysis system for analyzing the echolocation signals of microchiroptera

Lindsey, Alan R. January 1991 (has links)
No description available.
45

Foraging Habitat Selection by Ohio Bats: An Examination between Eastern Second Growth Forest, Eastern Old Growth Forest, and Pasture Land

Carter, Richard T. 25 April 2008 (has links)
No description available.
46

Time-varying frequency analysis of bat echolocation signals using Monte Carlo methods

Nagappa, Sharad January 2010 (has links)
Echolocation in bats is a subject that has received much attention over the last few decades. Bat echolocation calls have evolved over millions of years and can be regarded as well suited to the task of active target-detection. In analysing the time-frequency structure of bat calls, it is hoped that some insight can be gained into their capabilities and limitations. Most analysis of calls is performed using non-parametric techniques such as the short time Fourier transform. The resulting time-frequency distributions are often ambiguous, leading to further uncertainty in any subsequent analysis which depends on the time-frequency distribution. There is thus a need to develop a method which allows improved time-frequency characterisation of bat echolocation calls. The aim of this work is to develop a parametric approach for signal analysis, specifically taking into account the varied nature of bat echolocation calls in the signal model. A time-varying harmonic signal model with a polynomial chirp basis is used to track the instantaneous frequency components of the signal. The model is placed within a Bayesian context and a particle filter is used to implement the filter. Marginalisation of parameters is considered, leading to the development of a new marginalised particle filter (MPF) which is used to implement the algorithm. Efficient reversible jump moves are formulated for estimation of the unknown (and varying) number of frequency components and higher harmonics. The algorithm is applied to the analysis of synthetic signals and the performance is compared with an existing algorithm in the literature which relies on the Rao-Blackwellised particle filter (RBPF) for online state estimation and a jump Markov system for estimation of the unknown number of harmonic components. A comparison of the relative complexity of the RBPF and the MPF is presented. Additionally, it is shown that the MPF-based algorithm performs no worse than the RBPF, and in some cases, better, for the test signals considered. Comparisons are also presented from various reversible jump sampling schemes for estimation of the time-varying number of tones and harmonics. The algorithm is subsequently applied to the analysis of bat echolocation calls to establish the improvements obtained from the new algorithm. The calls considered are both amplitude and frequency modulated and are of varying durations. The calls are analysed using polynomial basis functions of different orders and the performance of these basis functions is compared. Inharmonicity, which is deviation of overtones away from integer multiples of the fundamental frequency, is examined in echolocation calls from several bat species. The results conclude with an application of the algorithm to the analysis of calls from the feeding buzz, a sequence of extremely short duration calls emitted at high pulse repetition frequency, where it is shown that reasonable time-frequency characterisation can be achieved for these calls.
47

Group fission-fusion dynamics and communication in the bottlenose dolphin (Tursiops truncatus)

Quintana-Rizzo, Ester 01 June 2006 (has links)
The bottlenose dolphin exhibits a fission-fusion social structure characterized by temporary associations lasting from minutes to hours. Although social structure has been described for some dolphin communities, the selective pressures affecting fission-fusion patterns and their consequences on dolphin communication are not well understood. The goals of the present study were three-fold: 1) to quantify the rate with which fission-fusion occurred and identify the selective pressures influencing an individual's decision to leave and join a temporary group; 2) to examine the communication signals produced during temporary separations; and 3) to estimate the distances over which dolphins could remain in acoustic contact while separated. It was found that a dolphin's decision to join or leave a group was related to social considerations such as the class of individual encountered (e.g., mothers with calves, adult single females, adult males, and juveniles) as dolphins move in different environments. The decision was also influenced by ecological characteristics such as the habitat where a dolphin was found. The two aspects in turn determined the rate of fission-fusion. Mothers with calves regularly using deep waters had high rates of fission-fusion. Those females encountered other females in the same reproductive condition frequently and associated with them. In contrast, mothers with calves using shallow waters had lower fission-fusion rates. Those females encountered juvenile dolphins often but they did not associate with them frequently. Temporarily separated dolphins did not always produce the sounds typically used for long-distance communication, and sometimes they did not use any detectable acoustic signal to find each other. On average, this absence of communication occurred at distances less than 50 m. When both whistles and echolocation produced, they were apparently involved in maintaining contact between mothers and their calves and other associates. Estimates of active spaces defined by whistle transmission indicated that communication range varied between habitats. Shallow seagrass areas had the smallest active space while channels had the greatest active space. Findings indicated that the distances over which dolphins remain in acoustic contact and can be considered members of groups are much greater than has been described from observations of dolphin spacing and activity alone.
48

Coding of Bat-like Auditory Features in the AN2 Interneuron of the Pacific Field Cricket, Teleogryllus oceanicus and its Relation to Decreasing the Conspicuousness of Synthetic Bat Echolocation Calls

Asi, Navdeep Singh 14 December 2010 (has links)
Many insects have auditory systems capable of detecting the ultrasonic calls of insectivorous bats and use these cues to evade capture. I tested the hypothesis that bats can decrease the conspicuousness of their echolocation calls by varying three call features: duration, repetition rate and ramp times. This was done by examining the AN2 command interneuron’s response to these features in the cricket, Teleogryllus oceanicus, after describing the firing pattern necessary for evasive behaviour. Past studies on duration and repetition rate suggest increased thresholds for short durations and low repetition rates. Measurements of the AN2 response, which controls evasive behaviour, indicated that increased thresholds were a result of a decrease in bursting, raw spike numbers and an increase in latencies in the AN2. Results suggest that there is pressure on bats to evade early detection and that this can be done by employing large ramp times in search phase echolocation calls.
49

Coding of Bat-like Auditory Features in the AN2 Interneuron of the Pacific Field Cricket, Teleogryllus oceanicus and its Relation to Decreasing the Conspicuousness of Synthetic Bat Echolocation Calls

Asi, Navdeep Singh 14 December 2010 (has links)
Many insects have auditory systems capable of detecting the ultrasonic calls of insectivorous bats and use these cues to evade capture. I tested the hypothesis that bats can decrease the conspicuousness of their echolocation calls by varying three call features: duration, repetition rate and ramp times. This was done by examining the AN2 command interneuron’s response to these features in the cricket, Teleogryllus oceanicus, after describing the firing pattern necessary for evasive behaviour. Past studies on duration and repetition rate suggest increased thresholds for short durations and low repetition rates. Measurements of the AN2 response, which controls evasive behaviour, indicated that increased thresholds were a result of a decrease in bursting, raw spike numbers and an increase in latencies in the AN2. Results suggest that there is pressure on bats to evade early detection and that this can be done by employing large ramp times in search phase echolocation calls.
50

Perceptual strategies in active and passive hearing of Neotropical bats

Goerlitz, Holger R., January 2008 (has links)
Thesis (doctoral)--Ludwig-Maximilians-Universität München, 2008. / Title from PDF title page (viewed on Nov. 12, 2008). Includes vita. Includes bibliographical references (p. [111]-131).

Page generated in 0.0707 seconds