• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 8
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

GRAPHICAL EDITORS GENERATION WITH THE GRAPHICAL MODELING FRAMEWORK: A CASE STUDY

ELOUMRI, Eloumri, Miloud Salem S 15 April 2011 (has links)
Domain Specific Modeling (DSM) aims to increase productivity of software development by raising the level of abstraction beyond code concepts and using domain concepts. By providing a generative model-driven tooling component and runtime support, the Eclipse Graphical Modeling Framework (GMF) aims to simplify the creation of diagram editors for specific domains based on a series of model creation and transformation steps. GMF leverages the Eclipse Modeling Framework (EMF) and the Eclipse Graphical Editing Framework (GEF) to allow the graphical modeling of Domain Specific Languages (DSL). A Domain Specific Language (DSL) is developed specifically for a specific task and specific domain. In this research, the State Machine Compiler (SMC) represents the specific domain for which a DSL in a form of a diagram editor is developed using GMF. SMC is an open source Java tool allowing generation of state pattern classes from textual descriptions of state machines. The main objective of this research is to describe the use of GMF, highlight potential pitfalls and identify strengths and weaknesses of GMF based on certain criteria. To be able to feed the SMC diagrams created with the editor into SMC, a Java Emitter Templates (JET) transformation is used to transform SMC model instances into textual format expected by SMC. / Thesis (Master, Computing) -- Queen's University, 2011-04-14 18:58:08.797
2

Graphical Editor for Diagnostic Method Development

Ravi, Sudharshan, Vu, Quang January 2014 (has links)
The adage A picture is worth a thousand words conveys the notion that acomplex concept can be understood with just a single picture. Thus visualisingdata allows users to absorb and use large amounts of data quickly.Although textual programming is widely used, it is not best suited for allsituations. Some of these situations require a graphical way to programdata. This thesis investigates the dierent modeling frameworks available withinthe Eclipse ecosystem that allow the reuse of existing XML schema modelsand the creation as well as editing of diagnostic methods. The chosenframeworks were used to build a graphical editor that allows users to create,edit and use diagnostic methods graphically.
3

Nástroj pro návrh čipu v UML / Tool for Chip Design in UML

Srna, Pavol January 2010 (has links)
This paper deals with the creation of the tool for chip design in UML. The intention of this work is to present the news in the UML language version 2.0, that can be possibly used for modeling of embedded systems. Furthermore, it deals with the possibility and method of modeling in the Eclipse environment and it focuses on the Eclipse Modeling Framework. This work explains the principle of developing of graphical editors based on GMF used fully by developing tool. Finally, it discusses the chosen solution.
4

Model Interchange between ARIS and Eclipse EMF

Kern, Heiko, Kühne, Stefan 06 February 2019 (has links)
The Architecture of integrated Information Systems (ARIS) is a technical space that is widely used in the area of business process management. The reuse of ARIS models in other working contexts is offered by ARIS-specific import and export interfaces. Nevertheless, the interoperability with other technical spaces is limited. In this paper, we explore ARIS language definition concepts and relate them to the Eclipse Modeling Framework (EMF). We describe an ARIS to EMF bridge which provides transformations of ARIS modeling languages and ARIS models to the EMF environment. Our bridge shows similarities and differences between the two approaches and provides technical interoperability that e.g. enables the processing of ARIS models in EMF-supporting tools (e.g. ATLAS Transformation Language).
5

Creating An Editor For The Implementation of WorkFlow+: A Framework for Developing Assurance Cases

Chiang, Thomas January 2021 (has links)
As vehicles become more complex, the work required to ensure that they are safe increases enormously. This in turn results in a much more complicated task of testing systems, subsystems, and components to ensure that they are safe individually as well as when they are integrated. As a result, managing the safety engineering process for vehicle development is of major interest to all automotive manufacturers. The goal of this research is to introduce a tool that provides support for a new framework for modeling safety processes, which can partially address some of these challenges. WorkFlow+ is a framework that was developed to combine both data flow and process flow to increase traceability, enable users to model with the desired granularity safety engineering workflow for their products, and produce assurance cases for regulators and evaluators to be able to validate that the product is safe for the users and the public. With the development of an editor, it will bring WorkFlow+ to life. / Thesis / Master of Applied Science (MASc)
6

Conceiving and Implementing a language-oriented approach for the design of automated learning scenarios

Moura, César 20 June 2007 (has links) (PDF)
Cette thèse a pour sujet la conception de scénarios pédagogiques destinés à l'e-formation. Afin de faciliter les échanges de matériaux décrivant des stratégies pédagogiques, la communauté s'est récemment mobilisée pour proposer un langage standard suffisamment générique pour permettre la représentation de n'importe quel scénario, indépendant même du paradigme éducationnel sous-jacent. Appelé génériquement Educational Modeling Language (EML), ce type de langage engendre une nouvelle façon de concevoir des EIAH, en s'éloignant du traditionnel Instructional System Design, une fois que, au lieu de proposer une application finie, les EML proposent un modèle conceptuel standard, une notation pour l'exprimer et des éditeurs et frameworks, laissant aux concepteurs finaux la tâche de créer leurs propres « applications ». Les EMLs permettent alors la création et exécution d'instances de scénarios, dans une approche plus ouverte et flexible, augmentant, ainsi, les possibilités d'adaptation des applications résultantes aux besoins des usagers.<br />Cette flexibilité reste pourtant limitée et, après quelques années de recherche, les EMLs commencent à montrer ses faiblesses. En fait, le langage choisi pour devenir le standard du domaine, le IMS-LD, s'est montré générique, certes, mais peu expressive, ne permettant pas une représentation fidèle des divers scénarios existants. C'est à dire, c'est aux usagers de s'adapter à la syntaxe et sémantique de cet standard.<br />Cette thèse part d'un constat quant aux difficultés du processus de conception lui-même, et aux risques de coupure qu'il peut y avoir entre pédagogues et développeurs de logiciels. Pour améliorer la capacité des équipes pédagogiques à pouvoir spécifier, et même implémenter, des scénarios pédagogiques, nous proposons une approche où c'est l'EML qui doit s'adapter aux besoins de l'usager. L'usager a la possibilité de créer son propre langage (ou ses propres langages), s'il en a besoin. En plus, un même scénario peut être décrit en même temps par des différents EMLs (ou modèles) respectant des différents perspectives - et même paradigmes - de chaque stake holder. <br />Cette approche, appelée multi-EML, est possible grâce aux avancées récentes du génie logiciel, telle l'Architecture Dirigée par les Modèles – l'implémentation la plus connue d'un nouvel paradigme de programmation surnommé Languages Oriented Programming (LOP), qui inclut encore d'autres implémentations. <br />Notre proposition réside dans la conception d'un environnement informatique « auteur », qui repose sur les principes des Languages Oriented Programming, en utilisant la plateforme ouverte ECLIPSE et, plus particulièrement son implémentation du LOP, l'Eclipse Modeling Framework (EMF). Ainsi, les concepteurs auront un outil qui leur permettra de créer des spécifications formelles décrivant les scénarios envisagés et d'en générer automatiquement des applications correspondantes, dans un processus qui démarre avec les descriptions informelles des experts du domaine.<br />Reconnaissant que les experts d'éducation - ceux qui mieux comprennent le domaine - ne sont pas nécessairement des informaticiens, l'environnement proposé, appelé MDEduc, fournit aussi un éditeur permettant de décrire un scénario dans une notation informelle, à savoir le pattern pédagogique, à partir de laquelle les modèles formels peuvent être dérivés. En plus, nous proposons de garder côte à côte et en coïncidence ces descriptions en langage informelles, et les descriptions plus formelles et normatives et d'offrir la possibilité d'effectuer des allers-retours à toutes les phases du cycle de vie du dispositif pédagogique.
7

Component-Based Model-Driven Software Development

Johannes, Jendrik 07 January 2011 (has links) (PDF)
Model-driven software development (MDSD) and component-based software development are both paradigms for reducing complexity and for increasing abstraction and reuse in software development. In this thesis, we aim at combining the advantages of each by introducing methods from component-based development into MDSD. In MDSD, all artefacts that describe a software system are regarded as models of the system and are treated as the central development artefacts. To obtain a system implementation from such models, they are transformed and integrated until implementation code can be generated from them. Models in MDSD can have very different forms: they can be documents, diagrams, or textual specifications defined in different modelling languages. Integrating these models of different formats and abstraction in a consistent way is a central challenge in MDSD. We propose to tackle this challenge by explicitly separating the tasks of defining model components and composing model components, which is also known as distinguishing programming-in-the-small and programming-in-the-large. That is, we promote a separation of models into models for modelling-in-the-small (models that are components) and models for modelling-in-the-large (models that describe compositions of model components). To perform such component-based modelling, we introduce two architectural styles for developing systems with component-based MDSD (CB-MDSD). For CB-MDSD, we require a universal composition technique that can handle models defined in arbitrary modelling languages. A technique that can handle arbitrary textual languages is universal invasive software composition for code fragment composition. We extend this technique to universal invasive software composition for graph fragments (U-ISC/Graph) which can handle arbitrary models, including graphical and textual ones, as components. Such components are called graph fragments, because we treat each model as a typed graph and support reuse of partial models. To put the composition technique into practice, we developed the tool Reuseware that implements U-ISC/Graph. The tool is based on the Eclipse Modelling Framework and can therefore be integrated into existing MDSD development environments based on the framework. To evaluate the applicability of CB-MDSD, we realised for each of our two architectural styles a model-driven architecture with Reuseware. The first style, which we name ModelSoC, is based on the component-based development paradigm of multi-dimensional separation of concerns. The architecture we realised with that style shows how a system that involves multiple modelling languages can be developed with CB-MDSD. The second style, which we name ModelHiC, is based on hierarchical composition. With this style, we developed abstraction and reuse support for a large modelling language for telecommunication networks that implements the Common Information Model industry standard.
8

Component-Based Model-Driven Software Development

Johannes, Jendrik 15 December 2010 (has links)
Model-driven software development (MDSD) and component-based software development are both paradigms for reducing complexity and for increasing abstraction and reuse in software development. In this thesis, we aim at combining the advantages of each by introducing methods from component-based development into MDSD. In MDSD, all artefacts that describe a software system are regarded as models of the system and are treated as the central development artefacts. To obtain a system implementation from such models, they are transformed and integrated until implementation code can be generated from them. Models in MDSD can have very different forms: they can be documents, diagrams, or textual specifications defined in different modelling languages. Integrating these models of different formats and abstraction in a consistent way is a central challenge in MDSD. We propose to tackle this challenge by explicitly separating the tasks of defining model components and composing model components, which is also known as distinguishing programming-in-the-small and programming-in-the-large. That is, we promote a separation of models into models for modelling-in-the-small (models that are components) and models for modelling-in-the-large (models that describe compositions of model components). To perform such component-based modelling, we introduce two architectural styles for developing systems with component-based MDSD (CB-MDSD). For CB-MDSD, we require a universal composition technique that can handle models defined in arbitrary modelling languages. A technique that can handle arbitrary textual languages is universal invasive software composition for code fragment composition. We extend this technique to universal invasive software composition for graph fragments (U-ISC/Graph) which can handle arbitrary models, including graphical and textual ones, as components. Such components are called graph fragments, because we treat each model as a typed graph and support reuse of partial models. To put the composition technique into practice, we developed the tool Reuseware that implements U-ISC/Graph. The tool is based on the Eclipse Modelling Framework and can therefore be integrated into existing MDSD development environments based on the framework. To evaluate the applicability of CB-MDSD, we realised for each of our two architectural styles a model-driven architecture with Reuseware. The first style, which we name ModelSoC, is based on the component-based development paradigm of multi-dimensional separation of concerns. The architecture we realised with that style shows how a system that involves multiple modelling languages can be developed with CB-MDSD. The second style, which we name ModelHiC, is based on hierarchical composition. With this style, we developed abstraction and reuse support for a large modelling language for telecommunication networks that implements the Common Information Model industry standard.
9

Domain Specific Modeling Support for ArCon / Stöd för domänspecifik modellering med ArCon

Azari, Leila January 2013 (has links)
One important phase in software development process is to create a design model of the system which follows all the architectural rules. Often the architectural rules are defined by the system architect and the system model is designed by the system designer. The architect defines the rules in a text file where no standard or pattern is followed. Therefore, there is always the risk of violating the architectural rules by the designer. So manual reviews on the system model should be done by the architect to ensure the system model is valid.In order to remove this manual checking which can be erroneous and time consuming ArCon (Architecture Conformance Checker) was developed by Combitech AB. ArCon is a tool which lets the architect define the architectural rules in the format of UML (Unified Modeling Language) models where the elements of the model have different meaning than the standard UML. ArCon can read this model and extract architectural rules from it and check the system model against those rules and then print all the rule violations.ArCon is an open source tool i.e. free for everyone to download and use. Currently, it supports Papyrus as the UML modeling tool. Papyrus is integrated to Eclipse platform and is a general purpose modeling tool. It supports users with all types of UML diagrams and elements.The idea for this thesis work was to implement a new feature for ArCon in order to facilitate the design process for system designers. The feature should provide the system designers only those types of elements which they are permitted to add to a specific fraction of the system model. The list of permitted element types should be extracted from the architecture model where all the architectural rules are defined in advance. This new support in ArCon was named Domain Specific Modeling (DSM) support.To evaluate the effect of DSM support on the system designers performance a few test sessions, called usability tests, were performed. The participants in the test sessions were a representative sample of software designers. After analyzing the data collected from the test sessions, the pros and cons of the new support were discovered. Furthermore, a few new ideas for enhancing DSM support were generated.

Page generated in 1.045 seconds