• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Die Restriktionsendonuklease EcoRII: Primitives antivirales Abwehrsystem der Bakterien oder mehr?

Reuter, Monika 20 November 2002 (has links)
Bakterielle Restriktions- und Modifikationssysteme (R/M-Systeme) greifen DNA endonukleolytisch an, die nicht die spezifische Markierung der eigenen Wirtszelle trägt. Zu einem R/M-System gehören eine Restriktionsendonuklease und eine DNA- Methyltransferase gleicher DNA-Spezifität. Die biologische Funktion der Restriktionsendonuklease besteht in der Abwehr von fremder, in die Zelle eindringender DNA, z. B? von Virus-Infektionen. Die korrespondierende DNA-Methyltransferase schützt die zelluläre DNA durch sequenz-spezifische DNA-Methylierung vor der endonukleolytischen Wirkung der Restriktionsendonuklease. Die dimeren TypII- Restriktionsendonukleasen erkennen kurze spezifische, unmethylierte Basensequenzen, die sie in Anwesenheit von Mg2+ Ionen an einer definierten Position endonukleolytisch spalten. Die Restriktionsendonuklease EcoRII braucht die koordinierte Wechselwirkung mit zwei Kopien der Sequenz 5 CCWGG, um katalytisch aktiv sein zu können, wobei eine der beiden Sequenzen als allosterischer Effektor wirkt und nicht gespalten werden muß. Die zwei Kopien der 5 CCWGG Sequenz können sowohl auf demselben als auch auf verschiedenen Molekülen lokalisiert sein. Die Interaktion von EcoRII mit verschiedenen DNA-Molekülen ist durch deren Länge und Konzentration, die Interaktion innerhalb eines DNA-Moleküls durch den Abstand zwischen beiden Sequenzen limitiert. Die durch Proteolyse nachgewiesene Zwei-Domänen-Struktur von EcoRII scheint diese besondere Form der Protein-DNA-Wechselwirkung zu ermöglichen. Die C-terminale Domäne von EcoRII stellt eine neue Restriktionsendonuklease (EcoRII-C) dar. Im Gegensatz zum Wildtyp-Enzym spaltet EcoRII-C an singulären 5 CCWGG Sequenzen. Die trunkierte Endonuklease spaltet DNA spezifisch und unabhängig von einem zweiten EcoRII-Erkennungsort. Die Reaktion verläuft deutlich schneller als die des kompletten EcoRII-Proteins. Die N-terminale Domäne bindet spezifisch DNA, attenuiert die endonukleolytische Aktivität von EcoRII und macht das Enzym abhängig von einer zweiten Kopie der Sequenz 5 CCWGG. EcoRII Wildtyp könnte demzufolge ein evolutionäres Intermediat zwischen einer sequenz-spezifischen Endonuklease und einem Protein sein, das spezifisch mit zwei Orten auf der DNA interagiert, wie z. B. Rekombinasen oder Transposasen. Durch die Kombination beider Funktionen könnte EcoRII selbst die Verbreitung der EcoRII-codierenden DNA-Sequenz in neue Populationen, ähnlich einem transponiblen Element, realisieren. / Bacterial restriction and modification systems (R/M-systems) endonucleolytically attack DNA that is not host cell-specifically modified. R/M-systems comprise a restriction endonuclease and a DNA methyltransferase exhibiting the same DNA sequence specificity. The biological function of the restriction endonuclease is the protection of the cell against invading foreign DNA, e. g. virus infection. The corresponding DNA methyltransferase renders cellular DNA resistent against the endonucleolytic action of the restriction endonuclease by sequence-specific DNA methylation. Dimeric type II- restriction endonucleases recognize short, specific, and unmethylated base sequences that they cut at a defined position in the presence of Mg2+ ions. Restriction endonuclease EcoRII requires the co- ordinated interaction with two copies of the sequence 5 CCWGG for catalytic activity. One of these sequences serves as an allosteric activator site and has not to be cleaved. The two copies of the sequence 5 CCWGG can be located as well on the same as on different DNA molecule(s). EcoRII interaction with two sites on different DNA molecules is limited by their length and concentration, EcoRII interaction within one DNA molecule is limited by the distance between the two sites. The two- domain structure of EcoRII figured out by limited proteolysis studies probably allows this particular form of protein-DNA interaction. The C-terminal domain of EcoRII represents a new restriction endonuclease (EcoRII-C). In contrast to EcoRII wild type, EcoRII-C cleaves DNA at single 5 CCWGG sites. The truncated endonuclease cleaves DNA specifically and independent of a second site. The enzymatic reaction passes well more rapid than that of the complete enzyme. The N-terminal domain binds DNA specifically, attenuates the endonucleolytic activity of EcoRII and makes it dependent on a second copy of the sequence 5 CCWGG. Therefore, the current EcoRII could be an evolutionary intermediate between a site-specific endonuclease and a protein that functions specifically with two DNA sites on the DNA such as recombinases and transposases. The combination of both functions may enable EcoRII to accomplish its own propagation similarly to transposable elements.
2

Besonderheiten der DNA-Erkennung und Spaltung durch die Restriktionsendonuklease EcoRII

Mücke, Merlind 09 October 2002 (has links)
Die homodimere Typ IIE Restriktionsendonuklease EcoRII erfordert im Gegensatz zu den orthodoxen Typ II Restriktionsendonukleasen die simultane Wechselwirkung mit zwei Kopien ihrer DNA-Erkennungssequenz 5'CCWGG, um die spezifische endonukleolytisch Spaltung der DNA zu katalysieren. In der vorliegenden Arbeit wurde mittels Transmissionselektronenmikroskopie bewiesen, daß EcoRII die Bildung von DNA-Schlaufen an einem linearen DNA-Substrat mit zwei DNA-Erkennungsorten induziert - ähnlich wie andere DNA prozessierende Enzyme und Transkriptionsfaktoren. Kinetische Untersuchungen der DNA-Spaltreaktion von EcoRII mit superhelikaler Plasmid-DNA, die entweder einen oder zwei DNA-Erkennungsorte für EcoRII enthielt, zeigten, daß EcoRII pro Spaltereignis nur an einem der beiden involvierten doppelsträngigen DNA-Erkennungsorte spaltet. Die Studie, in der EcoRII photochemisch mit den Basen der DNA-Erkennungssequenz vernetzt wurde, ergab ein asymmetrisches Vernetzungsmuster, das durch die partielle Asymmetrie an der A/T-Position der ansonsten palindromischen Erkennungssequenz hervorgerufen wird. Wir konnten zeigen, daß die Aminosäure Tyr41 von EcoRII das 5'C des 5'CCAGG-Stranges der Erkennungssequenz kontaktiert. Durch Aufklärung der Domänenorganisation von EcoRII konnten wir das Modell der EcoRII-DNA-Interaktion verbessern. Wir zeigten, daß für die simultane Interaktion des Enzyms EcoRII mit zwei Kopien der Erkennungssequenz zwei verschiedene Domänen verantwortlich sind. Die C-terminale Domäne ist eine neue Restriktionsendonuklease, die effizienter als das vollständige EcoRII an einzelnen Erkennungsorten spaltet. Die N-terminale Domäne bindet spezifisch an die DNA und reduziert die Aktivität des vollständigen Enzyms, indem sie die Spaltung von einem zweiten Erkennungsort abhängig macht. Daher nehmen wir an, daß EcoRII in der Evolution in Form der N-terminalen Domäne eine zusätzliche DNA-Bindungsfunktion akquiriert hat, um eine neue Proteinfunktion zu entwickeln, die die Spaltung von DNA und die Interaktion mit zwei DNA-Erkennungsorten einschließt. Solche Interaktionen sind z.B. Voraussetzung für die DNA-Rekombination oder Transposition. Daher könnte die gegenwärtige EcoRII Restriktionsendonuklease eine evolutionärer Übergang von ortsspezifischen Endonukleasen zu einem neuen Protein sein, das spezifisch mit zwei DNA-Orten interagiert. / The homodimeric type IIE restriction endonuclease EcoRII requires the cooperative interaction with two copies of the recognition sequence 5'CCWGG for DNA cleavage. This is in contrast to the orthodox type II restriction endonucleases which interact with single recognition sequences. We have proven by transmission electron microscopy that EcoRII simultaneously binds two recognition sites on a linear DNA-substrate by looping out the intervening DNA. This DNA-loop formation is similar to that of other DNA processing enzymes and transcription factors. Kinetic investigations of the DNA cleavage of supercoiled DNA-plasmids containing either one or two recognition sites for EcoRII showed that EcoRII cleaves only at one of the two involved double-stranded DNA recognition sites. Photocross-linking of EcoRII to the bases of the recognition sequence revealed an asymmetric cross-linking pattern. This asymmetry is due to the partial asymmetry of the recognition sequence at the central A/T position. Furthermore, we found that amino acid Tyr41 of EcoRII specifically contacts the 5'C of the 5'CCAGG strand of the recognition sequence. We found by limited proteolysis that a two-domain structure enables EcoRII to interact cooperatively with two recognition sites. The C-terminal domain is a new restriction endonuclease that, in contrast to the complete EcoRII, specifically cleaves at single 5'CCWGG recognition sites. Moreover, this new restriction endonuclease cleaves much more efficiently than EcoRII. The N-terminal domain specifically binds the DNA-substrate and reduces the activity of EcoRII by making the enzyme dependent on a second recognition site. Therefore, we assume that a precursor EcoRII enzyme acquired another DNA binding domain to develop a new protein function that includes DNA cleavage and specific interaction with two DNA sites. The current EcoRII protein could be an evolutionary intermediate between a site-specific endonuclease and a protein that functions specifically with two DNA sites such as DNA recombinases and transposases.
3

Regulation der Enzymaktivität der Restriktionsendonuklease EcoRII durch Autoinhibition

Szczepek, Michal 25 February 2011 (has links)
DNA-Restriktions und -Modifikationssysteme sind in Prokaryoten weit verbreitet und stellen einen wirksamen Schutz gegen das Eindringen mobiler genetischer Elemente dar. Sie kodieren für eine Restriktionsendonuklease (REase) und eine DNA-Methyltransferase (MTase) gleicher Nukleotidsequenz Spezifität. Die MTase methyliert die zelluläre DNA und schützt sie durch diesen epigenetischen Marker vor der Wirkung der REase. Die REase verhindert die Aufnahme fremder, unmethylierter DNA durch sequenzspezifische Spaltung. EcoRII ist eine REase, die für die effiziente DNA-Spaltung mindestens zwei Kopien ihrer Erkennungssequenz benötigt. Untersuchungen der EcoRII-Struktur und -Funktion offenbarten, dass das Protein aus zwei stabilen Domänen aufgebaut ist, wobei die N-terminale Domäne wie ein Repressor die C-terminale Domäne sterisch blockiert und deren katalytische Aktivität verhindert. Dieser als Autoinhibition bezeichnete und von eukaryotischen Proteinen gut bekannter Regulationsmechanismus wurde erstmals für eine REase vorgeschlagen. In dieser Arbeit konnten wir die Regulation der EcoRII-Enzymaktivität durch Autoinhibition auf molekularer Ebene beweisen. Wir identifizierten ß-Strang 1 (B1: 18YFVYIKR24) und a-Helix 2 (H2: 26SANDT30) als essenzielle inhibitorische Elemente der N-terminalen Domäne des EcoRII-Moleküls. Die Deletion von B1 oder H2 führte zu einer vollständigen Aufhebung der Autoinhibition. Darüber hinaus ist es uns gelungen, die 3D-Röntgenkristallstruktur von EcoRII mit 1,9 Å zu lösen und mit Hilfe von Computermodellen neue Interaktionen des Enzyms mit der DNA „minor groove“ zu beschreiben sowie eine Mg2+-Bindungstasche zu charakterisieren. Die Untersuchung der EcoRII-MTase durch limitierte Proteolyse zeigte, dass das Enzym in Abhängigkeit von der DNA-Sequenz und von seinen Kofaktoren, DNA auf unterschiedliche Weise binden kann. Kristallisierungsversuche der EcoRII-MTase in Anwesenheit der hemi-methylierten DNA-Erkennungssequenz ergaben erste diffraktierende Kristalle, deren Qualität optimiert werden muss und zur Strukturlösung führen soll. / Restriction and modification systems are wide spread among prokaryotes and pre-sent an efficient protection against invasion of mobile genetic elements. In general, they code for a restriction endonuclease (REase) and a DNA-methyltransferase (MTase) of the same DNA specificity. The MTase methylates the cellular DNA and by this epigenetic marker protects it against the action of the REase. The REase pre-vents the entry of foreign unmethylated DNA by site-specific cleavage. EcoRII is an REase which needs at least two copies of the recognition sequence for efficient cleavage. Investigations of the EcoRII structure and function revealed that the pro-tein is composed of two stable domains: the N-terminal domain acts as a repressor by sterically blocking the C-terminal domain and thereby inhibiting its catalytic activity. This regulatory mechanism is known as autoinhibition and has been often described for eukaryotic proteins, but for the first time was proposed for a REase. In this work, we verified the regulation of the EcoRII enzyme activity by autoinhibition at the molecular level. We identified ß-strand 1 (B1: 18YFVYIKR24) and a-helix 2 (H2: 26SANDT30) as essential inhibitory elements of the N-terminal domain. Deletion of B1 or H2 caused a complete abolishment of the autoinhibition. Fur-thermore, we were able to solve the 3D-X-ray crystal structure of EcoRII at 1.9 Å. Based on computer modelling we discovered new interactions between EcoRII and the DNA minor groove and defined the position of the Mg2+ binding pocket. Investigations of the EcoRII MTase by limited proteolysis showed that the enzyme binds DNA depending on DNA sequence and cofactors in different manners. Crystallography experiments with EcoRII MTase in the presence of hemimethylated recognition site DNA showed for the first time diffracting crystals which need further optimisation to create high quality crystals which allow structure solution.

Page generated in 0.0245 seconds