• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 296
  • 43
  • 2
  • Tagged with
  • 365
  • 365
  • 365
  • 107
  • 81
  • 65
  • 64
  • 63
  • 52
  • 51
  • 49
  • 46
  • 43
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Factors affecting savanna tree sapling recruitment.

Vadigi, Snehalatha. 06 November 2013 (has links)
Savannas are globally important ecosystems characterized by the coexistence of trees and grasses. Woody plants, which are slow-growing dominant life forms, influence the physiognomic structure and function of savanna ecosystems. Their density and distribution provides sustenance to a vast and unique savanna biodiversity, by forming a major source of food material to large mammalian herbivores, sheltering them and through their facilitation of diverse plant species. Savanna tree existence is strongly affected by factors that determine their sapling recruitment. We defined „sapling‟ as a young tree, in the first season of its growth, which does not depend on cotyledonary reserves (=seedling stage) and relies on external resources to grow further. Sapling recruitment may strictly be defined as the progression of a young plant from seedling to sapling stage. However, we believe that savanna tree saplings, present within the grass layer in the initial years of their growth, are equally vulnerable to environmental stresses. This study examines the factors affecting tree sapling establishment in a humid savanna (1250 mm mean annual precipitation). Additionally, the effects of fire were tested in a greenhouse experiment. Dominant species from humid savannas (> 1000 mm MAP), Acacia karroo, Acacia sieberiana, Schotia brachypetala and Strychnos spinosa, and mesic savannas (approx. 750 mm MAP), Acacia nigrescens, Acacia tortilis, Colophospermum mopane and Combretum apiculatum, were studied. In this thesis I examined the effects of resource availability (water, nutrients and light), disturbances (fire and herbivory) and competition (grass) on the sapling ecology of these species. Sapling recruitment and growth were assessed in terms of survival and aboveground growth responses, i.e. total biomass, stem growth rates (used as proxy measures for assessing persistence) and leaf biomass proportion (important for producing root reserves necessary to resprout). I studied the effects of fire and a nutrient gradient on survival and growth of four Acacia species in the presence of grass competition, in a controlled greenhouse experiment. Generally, Acacias invest in defenses after herbivory. I also determined their physical and chemical defense investments in this experiment. Sapling survival was not influenced by nutrients but highly varied among the species due to fire, indicating that fires may have a differential effect on species composition at a landscape scale. Intermediate levels of nutrients were found to be beneficial for sapling growth than high and low levels. This may be due to an increase in grass competition at higher levels of nutrients. Fires did not have a positive influence on sapling defence investment. To evaluate the relative importance of resource availability on sapling tree recruitment and its interactions with grass competition, I tested the effects of water (frequent irrigation vs. rainfall), shade (presence vs. absence), nutrients (addition vs. no addition) and grass competition (presence vs. absence) on sapling survival and growth under controlled field conditions in a humid South African savanna. Treatments did not have an effect on sapling survival, indicating that mortality is not defined by resource availability and grass competition in humid savannas. Shade had the greatest negative effect on sapling growth, suppressing the beneficial effects of nutrients and absence of grass competition. Nutrient limitation and grass competition had a relatively small influence on savanna sapling growth. Frequency of water availability had no effect on sapling growth, perhaps owing to high rainfall experienced over the experimental period. Therefore, canopy shade can be considered to be an important driver of tree dynamics in humid savannas with some degree of influence by nutrient availability and grass competition. The effects of clipping (i.e. simulated herbivory of grass and tree saplings) as influenced by nutrient availability and grass competition were examined on sapling survival and growth of all study species in a humid savanna. None of the treatments had an effect on sapling survival. This signifies that herbivory alone cannot significantly decrease plant density in humid savannas. However, tree saplings grew taller with a reduction in diameter and overall biomass, implying that saplings may become more susceptible to fires after herbivory. Nutrient addition and grass competition in general had a positive and negative effect, respectively, on sapling growth. This response was prominent in the stem length growth rates of defoliated saplings of one humid and two mesic species. These results imply that clipping (or herbivory) is the major factor reducing sapling vigour to establish, but is affected by both grass competition and nutrient availability. This study shows that fire has a differential effect on sapling survival of different species, particularly between humid savanna species. Light interception among all other resources limits the recruitment of saplings into adult size classes. Clipping, nutrient availability and grass competition had a relatively small direct effect, but may interact with other factors to alter sapling establishment dynamics. Wet-season droughts in humid savannas are not a hindrance to tree establishment because sapling survival was not dependent on frequency of rainfall. Thus, in humid savannas, fires can have a major impact on tree species density and composition while canopy shade has a very high potential to alter tree distribution. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
152

Spatial modelling of fire dynamics in Savanna ecosystems.

Berjak, Stephen Gary. January 1999 (has links)
Fire is used in the management of ecosystems worldwide because it is a relatively inexpensive means of manipulating thousands of hectares of vegetation. Deciding how, where and when to apply fire depends primarily on the management objectives of the area concerned. The decision to ignite vegetation is generally subjective and depends on the experience of the fire manager. To facilitate this process, ancillary tools, forming a decision support system, need to be constructed. In this study a spatial model has been developed that is capable of simulating fire dynamics in savanna ecosystems. The fire growth model integrates spatial fuel and topographic data with temporal weather, wind settings and fuel moistures to produce a time-evolving fire front. Spatial information required to operate the model was obtained through remote sensing techniques, using Landsat Thematic Mapper (TM) satellite imagery, and existing Geographic Information Systems (GIS) coverage's. Implementation of the simulation model to hypothetical landscapes under various scenarios of fuel, weather and topography produced fire fronts that were found to be in good agreement with experience of observed fires. The model was applied actual fire events using information for prescribed burning operations conducted in Mkuze Game Reserve during 1997. Predicted fire fronts were found to accurately resemble the observed fire boundaries in all simulations. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 1999.
153

Ecological genetic connectivity between and within southeast African marginal coral reefs.

Montoya-Maya, Phanor H. 17 June 2014 (has links)
Marine protected areas (MPAs) have been established along the East African coast to protect coral communities from human and natural disturbance. Their success is dependent on the degree to which resource populations are self-seeding or otherwise connected. Estimates of contemporary gene flow on or between south-east African reefs are thus required to reveal the interdependence of the South African coral communities and those to the north. Accordingly, the ecologically relevant (1 or 2 generations) connectivity of two broadcast-spawning corals, Acropora austera and Platygyra daedalea, was assessed on reefs in the region, from the Chagos Archipelago to Bazaruto Island in Mozambique and Sodwana Bay in South Africa, using hyper-variable genetic markers. Analysis of genetic diversity and differentiation provided evidence for the existence of four discrete genetic populations of A. austera and five of P. daedalea in the sampled area. Higher genetic diversity was found on northern South African reefs (Nine-mile Reef and Rabbit Rock) and migration patterns inferred from assignment tests suggested that, at ecological time scales, South African reefs are disconnected from those in Mozambique and might originate from a source of gene flow that was not sampled. The analysis of fine-scale genetic connectivity conducted on Two-mile Reef (TMR) demonstrated the existence of significant spatial genetic structure at the reefal scale that might be related to the non-random dispersal of coral larvae, putatively explaining the genetic discontinuity observed in the region. Altogether, the results are consistent with the isolation observed in other studies using less variable markers, and support the hypothesis that there is demographic discontinuity between the coral populations along the south-east African coast. More importantly, Acropora austera and P. daedalea represent different life strategies in the South African reef communities yet manifested similar genetic patterns, suggesting that these corals are responding similarly to forces that are driving genetic connectivity in the region. For management purposes, the genetically distinct populations identified at each of the spatial scales analysed in this study may correspond to management units, or evolutionarily significant units. Furthermore, since some reefs appear to act as “landing-sites” for migrants (Nine-mile Reef) and there is evidence of significant within-reef genetic structure (TMR), an adaptive management framework would be the best option for the MPA in the region. / Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2014.
154

Rehabilitation as a method of understanding vegetation change in Paulshoek, Namaqualand.

Simons, Liora-lee January 2005 (has links)
The main aim of this study was to test rehabilitation interventions in a system altered by heavy grazing, and to develop methods of monitoring these interventions.
155

Investigation of South African estuarine microbial species and genome diversity.

Kaambo, Eveline January 2006 (has links)
<p>A study of the microbial diversity in sediments of the Great Berg River estuary is carried out using modern molecular phylogenetic methods. The aim of this study was to determine the effect of (pollution by) the effluents of the fish industry on the composition of the microbial community in the sediments. The diversity in microbial groups of sediment samples that received wastewater from the local fishing industry was investigated by a PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) approach and compared to an unaffected site.</p>
156

Environmental factors influencing ecotonal changes in an indigenous forest in the Keiskammahoek Forest Estate, Eastern Cape, South Africa

Kiva, Luthando January 2016 (has links)
This study investigates environmental factors influencing ecotonal changes in the Dontsa Forest Management Unit (FMU) of the Keiskammahoek Estate Forest which is located in the Amatole Mountains of the Eastern Cape in the Republic of South Africa. The patterns of forest edge movement were analysed to show trends of forest edge movement from 1975 to 1985, 1975 to 1992, 1975 to 2002, 1975 to 2014, 1985 to 1992, 1985 to 2002, 1985 to 2014, 1992 to 2002, 1992 to 2014 and 2002 to 2014 by digitizing and assessing the scale of forest edge movement using georeferenced aerial photographs. Belt transects were established in six sites that were selected on the basis of physiographic elements for determination of the driving forces of forest ecotonal changes. The results of the study show that the forest edge moved positive towards the grassland biome while in other sites there was contraction of the forest edge from 1975 to 2014. The findings of the study show that some forest patches moved with few individual pioneer species towards the grassland while indigenous species dominated in the ecotone area of the forest in other research sites. D whyteana, A latifolius, R melanophloes, A facultus, R prenoides, C aurea, C bispinosa, C inerme, and S martina are the plant species with high density in the forest ecotone while A latifolius, R prenoides, R melanophloes were highly distributed along the grassland area. The results also show that harvesting of Pinus patula and illegal harvesting of understory species are major factors that result in ecotonal changes of Dontsa FMU. The research sites adjacent to residential areas have experienced reduction of ecotone area as compared to the research sites in high altitude areas of the Amathole Mountains where there is less disturbance. The eastern facing aspect of the forest exhibited a high density of plants in the forest ecotone as compared to the west facing slope.
157

Monitoring changes in vegetation distribution to ascertain the extent of degradation in the savannas of Nkonkobe Local Municipality, Eastern Cape, South Africa

Masiza, Wonga January 2016 (has links)
Savanna degradation is an environmental problem occurring in most countries around the world and it poses threats to biodiversity conservation, the food industry, and other economic sectors. According to FAO, South Africa’s rangelands exhibit the highest rate of fragmentation in comparison to range ecosystems in neighbouring countries including Lesotho and Swaziland, and consensus among researchers is that communal rangelands are more degraded than commercial rangelands. Although researchers and communities have identified the occurrence of land degradation in communal savannas at a local scale, land degradation has been poorly estimated because little has been done to quantify the extent and dynamics of perceived and observed changes associated with land degradation. The main goal of this study is to provide empirical insights on the direction of changes in the communal savannas of Nkonkobe Local Municipality in order to inform policy formulation and implementation. Additional to the communal sites is a private farm included for comparative analysis of trends in communal and commercial savannas. Landsat imagery was used to map, assess, and quantify the extent of land degradation in Nkonkobe Local Municipality, over a period of 30 years between 1984 and 2014. Field investigations were undertaken in June 2015 to acquire reference data to guide supervised classification of Landsat images. Three algorithms (Mahalanobis-distance, Minimum-distance, and Maximum likelihood classification) were compared to identify a classifier that produced the best results. The maximum likelihood classifier produced the best results with classification accuracy levels of 95.24 percent, 89.66 percent, and 95.65 percent for Honeydale Farm, Thyume, and Sheshegu respectively. Regression analysis revealed that both communal and private lands have experienced statistically significant increases in bush encroachment and decreases in surface water. Communal savannas have been confronted more by expansion of built-up area, decrease in open grassland, abandonment of arable land, soil erosion, and a steady invasion by Acacia Karroo compared to the privately owned commercial farm. The land cover changes measured through this investigation suggest an environmental shift that threatens biodiversity and agricultural activity. The study provides empirically informed insights about the direction to which these savannas are changing with the hope that the findings will prompt formulation and implementation of effective policies.
158

A geohydrological evaluation of the coastal area between Bushmans River Mouth and Cape Mouth and Cape Padrone, Eastern Cape, South Africa

Jolly, J L 15 March 2013 (has links)
No description available.
159

The evaluation of various reseeding methods for restoring old croplands in the Highveld region of South Africa

Van Oudtshoorn, Frits 30 November 2007 (has links)
In spite of the relative simple vegetation structure, the Grassland biome has surprisingly high species diversity. The Grassland biome is also the most transformed biome in South Africa, with cultivation having the largest impact. When croplands are abandoned, secondary succession leads to low diversity Hyparrhenia hirta dominated grassland. A combination of two seed mixtures, two seeding densities and two establishment methods was established in plots on a recently abandoned cropland at Suikerbosrand Nature Reserve to evaluate their effect on secondary succession. The rip plots, where more resources were available between the rip lines, have shown higher densities of relic weeds as well as local perennials, showing some progressive successional movement. However, Hyparrhenia hirta was one of the non-sown perennials increasing in the rip plots. Hyparrhenia invasion and relic weeds were best controlled in the plough plots. Although Hyparrhenia was successfully controlled in plough plots, no secondary succession occurred in these treatments. / Agriculture, Animal Health and Human Ecology / M. Tech. (Nature Conservation)
160

Intertidal patterns and processes tracking the effects of coastline topography and settlement choice across life stages of the mussels perna perna and mytilus galloprovincialis

Von Der Meden, Charles Eric Otto January 2010 (has links)
Within landscapes, spatial heterogeneity is common and specific landscape features can influence propagule dispersal by wind or water, affecting population connectivity and dynamics. Coastline topographic features, such as bays and headlands, have a variety of biophysical effects on nearshore oceanography, larval transport, retention and supply, and the processes of larval settlement and recruitment. Although this has been demonstrated in several parts of the world, engendering a perception of a general ‘bay effect’, few studies have investigated this generality in a single experiment or region, by replicating at the level of ‘bay’. The Agulhas biogeographic region of the south coast of South Africa is a useful system within which to test for such generality. Using the intertidal mussels Mytilus galloprovincialis and Perna perna as model organisms, patterns of adult distribution were surveyed across four large ‘halfheart’ bays and intervening stretches of open coast, providing replication at the level of ‘bay’ and duplication of ecologically similar species. In support of a general, pervasive influence of bays on intertidal populations, mussel cover was found to be greater in bays than on the open coast for both species, although the effect was strongest for M. galloprovincialis. To explain this adult distribution, settlement, post-settlement mortality and recruitment were examined over 12mo at the same sites, with the prediction that rates of each would favour larger bay populations. Contrary to this, an interaction between month and bay-status was found, with greater settlement and recruitment on the open coast than in bays reflecting extreme settlement and recruitment events at 3 westerly open coast sites during summer. Re-analysis excluding these outliers, revealed the expected effect, of greater settlement and recruitment in bays. While this indicates the broad generality of the bay effect, it highlights exceptions and the need for replication in time and space when examining landscape effects. Measuring post-settlement mortality required testing small-scale settlement behaviour on established and newly deployed settler collectors. It was found that all settlers preferred collectors with biofilm, but that primary settlers avoided conspecific settlers, while secondary settlers were attracted to them. With discrepancies in settler attraction to new and established collectors accounted for, initial (over 2d) and longer-term (over 7d) post-settlement mortality rates were found to be substantial (ca 60 %) for both species. No topographic effect on p-s mortality was evident. Finally, recruit-settler, adult-recruit and interspecies correlations were examined at regional and local scales. Synergistic (or neutral) effects maintained the initial settlement pattern in recruit and adult populations regionally, but not at local scales; striking interspecies correlations suggested the influence of common regional transport processes. Ultimately, the results emphasize the importance of the direction of effects in different life stages and at different spatial scales, and the possibility that antagonistic effects may mask even strong patterns.

Page generated in 0.0685 seconds