• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 296
  • 43
  • 2
  • Tagged with
  • 365
  • 365
  • 365
  • 107
  • 81
  • 65
  • 64
  • 63
  • 52
  • 51
  • 49
  • 46
  • 43
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

The use of remote sensing and Geographic Information System (GIS) techniques, to interpret savanna ecosystem patterns in the Sabi Sand Game Reserve, Mpumalanga province

Fortescue, Alexander Kenneth John January 1997 (has links)
This thesis explores techniques which ultimately strive to optimize production systems in rangeland areas of southern Africa. By linking spatially significant, satellite derived data to practical measurements of vegetation structure, valuable insight has been derived on processes of ecosystem function, in the Sabi Sand Game Reserve. A broad ecosystem response mechanism has been established from a conventional Normalized Differentiation Vegetation Index (NDVI). By responding to increases in production, which are driven by disturbance, this index has allowed quantitative systems theory in savanna to be tested and refined. Methods of biomass and production estimation which are specifically designed to reduce the cost and time involved with the more conventional method of destructive harvesting have been tested in the savanna at the Sabi Sand Game Reserve. Results from these estimates relate well with data derived through destructive harvesting in structurally similar savanna. Moreover, by relating the above-ground woody production estimates to remere sensing indices, it was possible to demonstrate that the problem of extrapolation, universal to most biomass and production studies can be overcome. Since remote sensing encompasses an array of tools fundamental to rangeland inventory, monitoring and management, valuable spatially significant information pertaining to ecosystem structure and function has been provided for managers in the Sabi Sand Game Reserve.
172

Freshwater invertebrate assemblages of the Eastern Cape Karoo region (South Africa) earmarked for shale gas exploration

Mabidi, Annah January 2017 (has links)
The Eastern Cape Karoo region is semi-arid with highly variable rainfall. This variability in rainfall sustains a mosaic of surface freshwater bodies that range from permanently to temporarily inundated. These waterbodies provide habitats for diverse invertebrate assemblages. The imminent hydraulic fracturing for shale gas has a potential to modify the water regime, with particular risk of salinisation. Accumulation of salts in freshwater wetlands results in loss of biodiversity, as invertebrate species shift from salt intolerant to salt tolerant species. This study therefore aims to expand on existing knowledge and provide new information on the distribution, diversity and structure of macroinvertebrate assemblages associated with various freshwater bodies in the region prior to shale gas exploration. Limnological and ecological aspects of thirty-three waterbodies (rivers, dams and depression wetlands) were investigated between November 2014 and March 2016. An experimental study on the effects of salinity on hatching success of branchiopod resting eggs was also included in the research. Rivers were characterised by high conductivity and depression wetlands by high turbidity, while dams had relatively higher pH than the other two waterbody types. In terms of global phosphorus interpretation guidelines, the results indicate that freshwater systems in the study region are predominantly eutrophic, indicating that agricultural run-off, particularly from livestock dung (goats, cattle and sheep), is an important source of phosphorus in the freshwater systems studied. Our results revealed new distribution records for branchiopod crustaceans in the Eastern Cape region, including the first record of Laevicaudata. Results showed that the sampled variables were unable to explain the variation in physicochemistry and invertebrate assemblage of several sites. Waterbody type, whether a depression wetland or a river, was the only factor that consistently showed an effect on the composition of both physicochemical data and invertebrate data. Depression wetlands ranged from completely bare to being extensively covered by macrophytes. Therefore, the effect of macrophyte cover in structuring macroinvertebrate assemblages was the focus of further investigation. The results indicated that the macrophyte cover gradient had little influence on the structure of the invertebrate assemblages in the depression wetlands, while only the presence/absence of vegetation significantly influenced the structure of the invertebrate assemblages in these systems. Surface area, dissolved inorganic nitrogen and pelagic chlorophyll-a were the environmental variables that best explained the variation in the macroinvertebrate assemblages among the sites. However, the differences in macroinvertebrate richness, abundance and distribution patterns among sites were only weakly influenced by local and regional environmental factors. These findings suggest that invertebrate in temporary wetland systems are adapted to the highly variable nature of temporary habitats, thus the influence of local variables is negligible. Results of the experimental study, on the effect of salinity on hatching success of branchiopod resting eggs, revealed that hatchling abundance and diversity of large branchiopods was significantly reduced at salinities of 2.5 g L−1 and above. Salt-tolerant taxa such as Copepoda and Ostracoda were the only ones to emerge in the highest salinity of 10 g L−1. Thus, should the region continue to experience increasing aridity and possible shale gas development, which all aggravate the salinisation problem, severe loss of branchiopod diversity (Anostraca, Laevicaudata, Spinicaudata and Notostraca) is likely to occur. This may lead to considerable decline in invertebrate diversity in the region, with cascading effects on food webs and ecosystem functions. The findings of this study can potentially be used in comparative studies on wetland invertebrate ecology in other semi-arid regions and in the formulation of policy and strategies for biodiversity conservation.
173

Benthic algal communities of shallow reefs in the Eastern Cape: availability of abalone habitat

Witte, Andrew Dennis January 2017 (has links)
Marine ranching has been identified as an alternative to traditional aquacultural rearing and growing organisms for consumption. In the Eastern Cape, abalone ranching is a new and experimental industry. The aims of the research were to: first develop a GIS model to assist management in site selection for abalone seeding; and secondly to develop and standardize the sampling methodology in order to ground truth the sites, and assist in the monitoring and habitat identification of abalone. The GIS model developed in Chapter 3 was created using an unsupervised classification and fuzzy logic approach. Both vector and raster datasets were utilized to represent 7 different layers. Predominantly satellite imagery was used to classify the different substrate groups according to pixel colour signatures. The basic process was to apply a fuzzy rule set (membership) to rasters which gave an output raster (Fuzzification). The membership output rasters were overlaid which creates a single model output. It was found that model accuracy increased significantly as more layers were overlaid, due to the high variability within each of the individual layers. Model ground-truthing showed a strong and significant correlation (r2 = 0.91; p < 0.001) between the model outputs and actual site suitability based on in situ evaluation. Chapter 4 describes the investigation towards the optimal sampling methods for abalone ranching habitat assessments. Both destructive sampling methods and imagery methods were considered as methods of data collection. The study also evaluated whether quadrat and transects were going to be suitable methods to assess sites, and what size or length respectively they should be to collect the appropriate data. Transect length showed great variation according to the factor assessed. A transect of 15 metres was found to be optimal. Abalone counts showed no significant (p = 0.1) change in the Coefficent of Variance (CV) for transect lengths greater than 15m, and had a mean of 0.2 abalone per metre. Quadrat size showed a significant difference in functional group richness between quadrat sizes of 0.0625m2, and 0.25m2 but no difference between 0.25m2 and 1m2 quadrats for both scape and photographic quadrats. It was also found that between 5 and 10 replicates (p = 0.08) represents the functional groups appropriately using quadrats and that a 0.25m2 quadrat is most suitable for sampling. Chapter 5 describes the benthic community structure of Cape Recife shallow water reefs. Using the standardized methodology previously mentioned, 45 sites were assessed to identify the community structure. These sites were grouped into 5 different groups influenced by depth and substrate, as well as functional group composition according to a Wards classification. The community structure showed that depth and substrate play a significant role (p < 0.05) in the community type. There is also a significant relationship (p < 0.05) between complexity, rugosity, abalone presence and substrate. During this study the basic protocols for site selection and benthic community monitoring have been developed to support the abalone ranching initiative in the Cape Recife area. It has also provided a baseline of the benthic community in the ranching concession area which will be used as a benchmark for future monitoring efforts. The site selection, sampling, and monitoring methods developed during the course of this work have now been rolled out as Standard Operating Procedures for the ranching programme in this area.
174

Spatial and temporal variability in water quality characteristics of the Swartkops Estuary

Pretorius, Liaan Marié January 2015 (has links)
Water quality characteristics of the heavily urbanised and industrialised Swartkops River catchment in the Eastern Cape has been the focus of several studies since the 1970s. Overloaded and poorly maintained wastewater treatment works (WWTW), polluted stormwater runoff and solid waste have had a negative impact on the water quality status of the Swartkops River and estuary. Past studies have revealed that a distinct relationship exists between land use activities and the water quality of the Swartkops Estuary, which in turn has raised concerns pertaining to the ecological, economic, recreational, and cultural value of the estuaryThe Swartkops Estuary has a Present Ecological State (PES) of Category D(1) and a Recommended Ecological Category (REC)(2) of a C (Van Niekerk et al., 2014). It is known that effective management of anthropogenic impacts on coastal systems requires a thorough understanding of the system’s biological responses to wastewater discharges and to hydrologic changes. For this reason, the objective of this study was to determine the current water quality status of the Swartkops Estuary, and to gain greater insight into factors controlling eutrophication. This was important as outdated water quality information was used in the Swartkops Integrated Environmental Management Plan (Enviro-Fish Africa, 2011) due to a lack of current data. To determine the current water quality status of the Swartkops Estuary the present study investigated spatial and temporal variability in physico-chemical parameters, nutrients, phytoplankton biomass and community composition, faecal bacteria, and “where possible” related this to historical water quality data. In general, points of entry into the estuary were investigated for their impact on nutrient enrichment and the bacteriological status of the estuary. Water quality surveys were completed in September 2012, November 2012, February 2013, May 2013 and August 2013The present study found evidence to suggest that water is not flushed as efficiently from the estuary as was previously the case, and that the natural hydrology of the estuary has been modified. These changes appear to be the effect of large volumes of wastewater discharges from the wastewater treatment works (WWTW), which has led to the additional stresses of increased vertical stratification and reduced vertical mixing. A build-up of dissolved inorganic nutrients has given rise to persistent eutrophic conditions and phytoplankton blooms occurring from the middle reaches to the tidal limit of the estuary. These findings were associated with a generally well oxygenated estuary; however, bottom water hypoxic conditions were recorded in the upper reaches of the estuary on two occasions and were generally associated with bloom.forming flagellates. Elevated concentrations of inorganic nutrients stimulated phytoplankton to attain high biomass ranging from 0 to 248 g l-1 (31.8 6.56 g l-1). All nutrients displayed positive linear gradients from the mouth to the tidal limit, showed significant (p < 0.05) temporal and spatial variability, and were significantly (p < 0.05) correlated with phytoplankton biomass. Phytoplankton blooms (> 10 000 cells ml-1) of several different groups were recorded from the middle reaches of the estuary to the tidal limit. Diatoms were the dominant group during increased freshwater inflow (at mean daily flow rate of 2.14 m3 s-1) and low DIP levels, whereas flagellates were generally the dominant group during reduced flow and under higher nutrient levels. Although the different tidal stages had no effect on phytoplankton biomass per se, it did support co-existance between phytoplankton groups. This was noted during the spring ebb tide in September 2012 (i.e. flagellates, diatoms and dinoflagellate) and in February 2013 (i.e. dinoflagellates, diatoms and chlorophytes). Phytoplankton blooms have become persistent in the middle to upper reaches of the estuary where chlorophyll-a was > 20 µg l-1 and cell density exceeded 10 000 cells ml-1; a situation not reported in previous studies. The Motherwell Canal was and still is the main source of nitrogen (generally in the form of ammonium) to the estuary, whereas the Swartkops River is still the primary source of phosphorus to the estuary. Since the stormwater canal services the large residential area of Motherwell where leaks in the sewer system, the dumping of night soil buckets, and faulty pumps are often reported, polluted discharges from the Motherwell Canal can enter the canal at any given point. In contrast to the canal, DIP loading from the Swartkops River to the estuary generally occurred under conditions of low flow, whereas nitrogen showed no apparent relationship. Faecal bacteria originating from the Motherwell Canal had the most profound effect on the bacteriological status in the middle reaches of the estuary, whereas the Swartkops River had an intermediate effect due to bacteria die-offs occurring between the point of release from the WWTW to the riverine reaches and the tidal limit of the estuary. Nevertheless, Escherichia coli and enterococci levels are still high, especially in the summer months rendering the estuary unsafe for recreation during this season. Historical data on trace metals in the water column were limited and thus observations from the present study could not be concluded with much confidence. However, preliminary data suggest that levels of copper, zinc, iron and cadmium have increased by at least 90% in the estuary, at the tidal limit of the estuary and in the Markman and Motherwell canals. High inputs of nutrients, trace metals and faecal bacteria to the estuary from land-use activities indicate the necessity for remedial actions with the main objective being to conserve and protect the estuary’s recreational, ecological and economic functions.
175

Sandy beach food webs and trophic linkages with estuaries: a stable light isotope approach

Bezuidenhout, Karien January 2010 (has links)
Two pocket sandy beaches, Eastern Cape, South Africa, were investigated, to determine whether these beaches were subsidised by an adjacent mangrove estuary, by using stable light isotope (δ 13C and δ 15N) analyses. The trophodynamics and macrofaunal food webs of these two beaches, situated between the Mgazi and Mgazana estuaries (in a warm-temperate/subtropical transition zone,), were described. Two to 2.5 trophic levels were identified for the macrobenthic community, with suspension feeders and omnivorous scavengers as the primary consumers, and carnivores as the secondary consumers. Mangrove material and terrigenous inputs were not driving the sandy beach food webs. Instead, marine allochthonous inputs (carrion, macroalgae), possibly phytoplankton, sediment organic matter, and resident macroinfauna were the dominant food sources. Cattle dung could have been the only important terrigenous food source utilised by the beach benthos. The macroinfauna displayed generalist/omnivorous feeding strategies, but within the limits of predominantly marine food sources. There was evidence that carnivores actively preyed on resident beach fauna. Omnivory and intraguild feeding might also be important biological processes in these communities. Seasonal and spatial variability in stable isotope composition of the fauna was observed, but few patterns were evident. There was a general trend of more enriched δ 15N and δ 13C composition of animal tissues in summer as opposed to winter. This was accompanied by a general decrease in C:N ratios in summer. It was hypothesised that these isotopic and biochemical changes were in response to increased food availability during summer. Although mangrove material appeared not to play an important role in the nutrition of these sandy beach communities, it was suggested that a high retention time of particles in the bay could enhance bacterial decay of particulate mangrove material, which could then act as fine, bacterial-enriched particulate food to the macrobenthos. This remains to be tested.
176

Estimating the willingness-to-pay for restoring indigenous vegetation at selected sites in South Africa

Tessendorf, Sharon Erica January 2007 (has links)
The Working for Water (WfW) Programme is a public works programme designed to clear South Africa of invasive alien vegetation and to restore lowwater consuming indigenous vegetation in the areas that have been cleared. Funds to clear alien invasives were initially secured on the basis that such a programme would increase water runoff, facilitate biodiversity and ecosystem functioning, and provide social benefits through job creation. The economic merits of the Programme, in terms of increased water yields, has been established in the Western Cape and KwaZulu-Natal, but questioned in the Eastern and Southern Cape. However, there are economic aspects of the studies carried out in the Eastern and Southern Cape that merit more attention than was given them; one of these being the issue of non-water benefits. Preliminary figures emanating from contingent valuation pilot studies conducted at six WfW projects sites indicated that one of these non-water benefits, namely the biodiversity and ecosystem resilience benefit, could be substantial. As such, the primary objective of the present study was to apply the contingent valuation method (CVM) to value people’s preference for indigenous vegetation. This value was intended to serve as a proxy for increased biodiversity and ecosystem resilience at three WfW sites. Despite the controversy surrounding the CVM, it has been found that it is a credible valuation tool. The CVM’s merits lie in its versatility and in the fact that it is the only method available which is capable of obtaining estimates of both nonuse and use values, thus making it applicable for valuing biodiversity. The primary aim of a CVM study is to determine an estimate of the total willingness-to-pay (WTP). In this study, the total WTP figure was calculated by multiplying the median WTP for the local WfW Programme by the total number of user households. The respective total WTP amounts are shown in Table 1. It was anticipated that respondents would be willing to pay more for the national WfW Programme, than for the less inclusive good (i.e. the local WfW Programme). The results correspond with this expectation at the Port Elizabeth and Underberg sites. However, due to strategic factors Worcester respondents were willing to pay more for the local WfW Programme than for the national Programme.
177

The contribution of submerged macrophytes and macroalgae to nutrient cycling in the Great Brak Estuary

Human, Lucienne Ryno Daniel January 2013 (has links)
An ecological reserve study by the Department of Water Affairs on the Great Brak Estuary stated that there was a need to determine how much nitrogen and phosphorus was flowing through the estuary as well as how effective the macroalgae were at removing N and P. The objective of this study was to investigate the physico-chemical characteristics in the estuary and the influence of these on the submerged macrophytes and macroalgae. A nutrient budget for the estuary was developed in order to quantify the contribution of the submerged macrophytes and macroalgae relative to other contributing sources. The Wolwedans Dam located 3 km upstream from the estuary has reduced the amount of freshwater flow to the estuary by as much as 56 percent. The estuary has been allocated 2 x 106 m3 per annum of freshwater (ecological reserve) that is used to breach the mouth once or twice a year in spring or summer. Even though this water has been made available it is not sufficient to flush the estuary. Reduced flushing has led to an accumulation of organic matter and degradation in the water quality. Physico-chemical measurements between September 2010 and July 2012 showed that dissolved oxygen values were generally below 6 mg l-1. The average NH4+ concentration in the estuary was 7 μM and increased with depth to 12 μM at 2 m depths. Concentrations >45 μM were found in February and April 2011 at the 5 m deep hole at 3.4 km upstream. Negative correlations between dissolved oxygen and NH4+ during November 2010, February 2011, April 2011 and July 2011 (r = -0.68; -0.67; -0.63; -0.96) indicated that remineralisation of organic matter had occurred. Soluble reactive phosphorus (SRP) followed a similar trend to the NH4+ and was generally below 1 μM in the water column for most months, and had peaks at 1.0 km and 3.4 km in the bottom water. The abundance of submerged macrophytes and macroalgae below the N2 bridge were mostly influenced by mouth state and river inflow. During the closed phase the dominant macroalga Cladophora glomerata had an area cover ranging from 3000 to 6000 m2 while Zostera capensis and Ruppia cirrhosa covered an area of 2000 to 3500 m2 and 1500 to 2900 m2, respectively. After an artificial breach in February 2011, water drained out of the estuary leaving the alga stranded on the marshes and as the flood tide entered the macroalga was once again redistributed in the lower reaches. The alga utilised the available nutrients in the water column and expanded its area cover from 35000 m2 in February 2011 to 64000 m2 in March 2011. However, after the floods in June 2011, Cladophora glomerata had been washed out of the system while the submerged macrophytes responded positively extending their area cover. By comparing the artificial breach with the natural breach, and the effect on the estuary, an important observation was highlighted. Increasing the current allocated ecological reserve, and using a larger volume of water to breach the mouth artificially, would result in better scouring of sediment and associated organic matter out of the estuary. This would enable better oxygenation of the water column, reduce remineralisation and minimise algal blooms.
178

Microalgal biomass and distribution in the Mngazi and Mngazana Estuaries

Ngesi, Hlekani Ntombizakithi January 2010 (has links)
The present study was undertaken in the temporarily open/closed Mngazi and permanently open Mngazana estuaries, located on the subtropical east coast of South Africa. The results from this research will assist decision makers in the freshwater management of these systems. Intertidal and subtidal benthic chlorophyll a concentrations, water column chlorophyll a, nutrients and several physico-chemical parameters were measured between June 2002 and November 2003. The objective of this study was to determine if the presence of freshwater in the estuaries had an effect on the microalgae of both estuaries. Five sites were sampled in the Mngazi Estuary and 14 sites were sampled in the Mngazana Estuary. The average water column chlorophyll a was significantly higher (p<0.05) in the Mngazana Estuary (surface 7.8 ± 0.7 μg.l-1, bottom 6.4 ± 0.7 μg.l-1) compared to the Mngazi Estuary (surface 4.9 ± 1.2 μg.l-1, bottom 7.3 ± 1.5 μg.l-1). There was no evidence of an REI (river-estuary interface) zone in areas where the water column chlorophyll a concentrations were high even during open mouth conditions in the Mngazi Estuary. The REI is that area where salinity is less than 10 ppt and is characterized by high water column productivity. Even though both systems received some freshwater during the summer periods, this was not enough to stimulate phytoplankton growth and nutrient availability seems to be the major factor limiting phytoplankton in these systems. Flagellates and diatoms were the dominant phytoplankton groups in both estuaries during the entire sampling session. The relative abundance of the different phytoplankton groups did not show differences between sites. The relative abundance of flagellates was in most cases greater than 60% and diatoms made up the remainder. The average benthic chlorophyll a was higher in the Mngazana Estuary (intertidal 24 ± 6 μg.g-1 subtidal 15.2 ± 3 μg.g-1) compared to the Mngazi Estuary (intertidal 15.3 ± 4.3 μg.g-1 subtidal 5.4 ± 1.6 μg.g-1). Regions with high benthic chlorophyll a concentrations had high sediment organic content. Sediment organic content was higher in the Mngazana Estuary (1 percent - 8 percent) compared to the Mngazi Estuary (4 percent – 6.8 percent). The sites situated on the Main Channel had on average significantly higher (p<0.05) benthic chlorophyll a biomass compared to Creek 1 and Creek 2 in the Mngazana Estuary. Peaks in benthic chlorophyll a concentrations occurred in the intertidal sediments in Creek 1 (50.4 ± 13.4 μg.g-1) and Creek 2 (57.4 ± 1.4 μg.g-1) in the Mngazana Estuary, the peaks occurred in winter during a period of low freshwater inflow into the estuary. Microphytobenthic biomass measured in the Mngazi Estuary is among the lowest values reported in the literature for temporarily open/closed estuaries. Statistical 4 analysis showed no significant difference between benthic chlorophyll a during the different mouth conditions and sampling sessions in the Mngazi Estuary. Microalgal responses in the Mngazana Estuary were similar to those observed in other permanently open marine dominated estuaries. In the temporarily open/closed Mngazi Estuary microalgal characteristics were different to that of other temporarily open/closed estuaries probably because the estuary was only sampled in the open and semi-closed state.
179

How does the ungulate community respond to predation risk from cheetah (Acinonyx jubatus) in Samara Private Game Reserve?

Makin, Douglas Ferguson January 2012 (has links)
Predator reintroductions are becoming increasingly more common for multiple reasons, including assisting with the conservation of a predator species, the restoration of ecosystem functions and the economic benefits of their reintroduction for ecotourism ventures. There remains however, little knowledge on prey species responses to these predator reintroductions. As such, the reintroduction of cheetah (Acinonyx jubatus) into Samara Private Game Reserve provided an opportunity to investigate prey responses to predator reintroduction across a range of spatial and temporal scales. More specifically, the aim of this study was to investigate the effect of cheetah predation risk on habitat use and behavioural responses of the resident ungulate community. Samara is divided into “predator present” and “predator absent” sections, providing the opportunity to conduct a comparative study investigating the effect of cheetah on prey responses. It was hypothesized that different ungulate species would respond differently to the presence of cheetah, depending on differences in perceived vulnerability to cheetah predation. To address this, shifts in habitat use, and behavioural responses of the ungulate community reflected at landscape and patch scale were investigated. Overall, ungulate species have not shifted habitat use since cheetah reintroduction, this was possibly related to life history strategy constraints and the need for individuals to obtain suitable forage and therefore remain in specific habitats. While no shift in habitat use was observed for the majority of ungulate species, a shift in behaviour was observed for kudu (Tragelaphus strepsiceros) at a landscape scale, where kudu dedicated more time to vigilance and less time to foraging within the predator section. In addition, individuals within smaller kudu groups were observed to be more vigilant than individuals within larger groups of kudu within the predator section. Although the other three ungulate species monitored did not increase time spent vigilant within the predator section, they still maintained relatively high levels of vigilance, potentially as a means of social monitoring. At a patch level, ungulate species responded strongly to a predator cue as a proxy for cheetah proximity, and increased time spent vigilant with a trade-off of lower foraging effort. This vigilant response was strongest for kudu. Differences in perceived predation risk were reflected within eland (Tragelaphus oryx) and kudu species demographic classes, with juvenile eland and kudu, adult female kudu and subadult female kudu spending more time vigilant within manipulated patches than respective males of each species. Kudu were also observed adopting fine-scale behavioural responses to minimize predation risk within patches. The asymmetrical prey species response to perceived predation risk from cheetah supports the hypothesis that different species respond differently to the presence of a predator. Furthermore, this study illustrated the importance of measuring prey responses to predation risk across multiple scales and highlighted the need to replicate this study for a number of different sites where predators have been reintroduced, to better understand the range of factors influencing these predator-prey interactions.
180

A status assessment of mangrove forests in South Africa and the utilization of mangroves at Mngazana Estuary

Rajkaran, Anusha January 2011 (has links)
In South Africa mangrove forests are located in estuaries from Kosi Bay in KwaZulu-Natal (KZN) to Nahoon Estuary in the Eastern Cape. The aims of this study were to determine the present state of mangroves in KwaZulu-Natal, by assessing the current population structure, the changes in cover over time and associated anthropogenic pressures. A second objective of this study was to determine the effect of harvesting on the population structure and sediment characteristics in the Mngazana mangrove forest. To determine if harvesting was sustainable at Mngazana Estuary; the growth and mortality rates and associated growth conditions were measured. Finally by using population modelling sustainable harvesting limits were determined by predicting the change in population structure over time. The study focussed on the KwaZulu-Natal province as a fairly recent study addressed mangrove distribution and status in the Eastern Cape Province. A historical assessment of all mangroves forests in KwaZulu-Natal (KZN) revealed that the potential threats to mangroves in South Africa include; wood harvesting, altered water flow patterns coupled with salinity changes, prolonged closed-mouth conditions and subsequent changes to the intertidal habitat. As a result mangroves were completely lost from eleven estuaries in KZN between 1982 and 1999 and a further two estuaries by 2006. Mangroves only occurred in those estuaries where the mouth was open for more than 56 percent of the time with the exception of St Lucia, where the mouth has been closed for longer but the mangrove communities have persisted because the roots of the trees were not submerged. All mangrove forests in KZN were regenerating in terms of population structure as they had reverse J-shaped population curves as well as high adult: seedling ratios. Kosi Bay and Mhlathuze Estuary were two of the larger forests that showed signs of harvesting (presence of tree or branch stumps), but the greatest threat to smaller estuaries seems to be altered water flow patterns due to freshwater abstraction in the catchments and the change of land use from natural vegetation to sugar-cane plantations. These threats affect the hydrology of estuaries and the sediment characteristics (particle size, redox, pH, salinity, temperature) of the mangrove forests. The environmental conditions under which the mangrove forests currently exist were determined for five species. Lumnitzera racemosa and Ceriops tagal exhibited a narrow range of conditions as these species are only found at Kosi Bay, while Avicennia marina, Bruguiera gymnorrhiza and Rhizophora mucronata were found to exist under a wider range of conditions. The growth rate and response to environmental conditions of the three dominant species were important to determine as these species are impacted by harvesting. Mangrove growth rates were measured at Mngazana Estuary in the Eastern Cape, the third largest mangrove forest in South Africa. Areas of this estuary where mangroves harvesting has occurred, show significant differences in sediment characteristics as well as changes in population structure in harvested compared to non harvested sites. The growth rate (in terms of height) of Avicennia marina individuals increased from seedlings (0.31 cm month-1) to adults (1.2 cm month-1), while the growth of Bruguiera gymnorrhiza stabilised from a height of 150 cm at 0.65 cm month-1. The growth of Rhizophora mucronata peaked at 0.72 cm month-1 (height 151-250 cm) and then decreased to 0.4 cm month-1 for taller individuals. Increases in diameter at breast height (DBH) ranged between 0.7 and 2.3 mm month-1 for all species. Some environmental variables were found to be important drivers of growth and mortality of individuals less then 150 cm. A decrease in sediment pH significantly increased the mortality of Avicennia marina seedlings (0-50 cm) (r = - 0.71, p<0.05) and significantly decreased the growth of Rhizophora mucronata and Bruguiera gymnorrhiza seedlings (r = -0.8, r = 0.52 – p < 0.05 respectively). At Mngazana Estuary, mortality of this species showed a positive correlation with sediment moisture content indicating that this species prefers drier conditions. The density of Rhizophora mucronata was significantly correlated to porewater temperature in Northern KZN as was the growth of adult (>300 cm) Rhizophora trees at Mngazana Estuary. Mortality of Avicennia marina individuals (51-150 cm) was related to tree density indicating intraspecific competition and self thinning. Selective harvesting of particular size classes of Rhizophora mucronata was recorded when comparing length of harvested poles (~301 cm) and the size class distribution of individuals. Taking into account the differences in growth rate for each size class for this species it will take approximately 13 years to attain a height of 390 cm which is the height at which trees are selected for harvesting at this estuary. This is 2.6 times slower than those individuals growing in Kenya. The feasibility of harvesting is dependent on the growth rate of younger size classes to replace harvested trees as well as the rate of natural recruitment feeding into the population. Different harvesting intensity scenarios tested within a matrix model framework showed that limits should be set at 5 percent trees ha-1 year-1 to maintain seedling density at > 5 000 ha-1 for R. mucronata. However harvesting of Bruguiera gymnorrhiza should be stopped due to the low density of this species at Mngazana Estuary. Harvesting of the tallest trees of Avicennia marina can be maintained at levels less than 10 percent ha-1 year-1. Effective management of mangrove forests in South African is important to maintain the current state, function and diversity of these ecosystems. Management recommendations should begin with determining the freshwater requirements of the estuaries to maintain the mouth dynamics and biotic communities and deter the harvesting of (whole) adult trees particularly those species that do not coppice. Further management is needed to ensure that forests are cleared of pollutants (plastic and industrial), and any further developments near the mangroves should be minimized.

Page generated in 0.4065 seconds