• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 175
  • 39
  • 24
  • 17
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 3
  • 1
  • Tagged with
  • 349
  • 71
  • 55
  • 50
  • 47
  • 46
  • 37
  • 36
  • 35
  • 33
  • 32
  • 30
  • 28
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Eigenvalues and Approximation Numbers

Chakmak, Ryan 01 January 2019 (has links)
While the spectral theory of compact operators is known to many, knowledge regarding the relationship between eigenvalues and approximation numbers might be less known. By examining these numbers in tandem, one may develop a link between eigenvalues and l^p spaces. In this paper, we develop the background of this connection with in-depth examples.
182

[en] DETERMINATION OF VOLTAGE CONTROL AREAS BASED ON INTERDEPENDENT CONTROLLER EQUIPMENTS / [pt] DETERMINAÇÃO DE ÁREAS DE CONTROLE DE TENSÃO COM BASE NA INTERDEPENDÊNCIA DOS EQUIPAMENTOS CONTROLADORES

JELITZA LUZ CEBALLOS INFANTES 20 September 2011 (has links)
[pt] Após a incidência de inúmeros problemas relacionados a fenômenos de instabilidade de tensão, o controle de potência reativa em sistemas elétricos de potência tornou-se um assunto importante os últimos anos. Um adequado controle do perfil de tensão em uma área pode contribuir para evitar este tipo de problema. Com esse objetivo, determinam-se áreas de controle de tensão a partir da análise dos autovalores e autovetores das matrizes de sensibilidade: VCS Voltage Control Sensitivity Matrix e QV. A matriz de sensibilidade [VCS] é constituída por elementos diagonais que relacionam a grandeza controladora de cada equipamento com a respectiva tensão controlada (variável controlada), e a análise do sinal desses elementos estabelece se uma determinada ação de controle será adequada ou não, isto é, se terá efeito esperado ou oposto. Os elementos fora da diagonal representam a interdependência existente entre os equipamentos controladores de tensão. A matriz de sensibilidade QV, nomeada como [JSQV] é obtida a partir da matriz Jacobiana do sistema linearizado das equações de fluxo de carga. As áreas de controle de tensão determinadas da análise por autovalores e autovetores usando-se cada uma das matrizes de sensibilidade são coerentes. Adicionalmente, obtêm-se áreas de controle de tensão diretamente das matrizes de sensibilidade. Estas áreas foram comparadas encontrando-se resultados coerentes. / [en] After of the incidence of innumerable problems related to voltage instability phenomena, the control of reactive power in electrical power systems became an important issue in the last years. The adequate control of the voltage for a specific area can prevent this kind of problem. With this objective, voltage control areas are established from an eigenvalues and eigenvectors analysis of the sensitivity matrixes: VCS Voltage Control Sensitivity Matrix and QV. The sensitive matrix [VCS] is form by diagonal elements that relate to the controlling variables and to the controlled voltage (controlled variable), and the analysis of the sign of each diagonal element indicate if a specific control action is adequate or not. The off-diagonal elements represent the interdependence among the voltage controller equipments. The sensitivity matrix QV, called [JSQV] is obtained from the Jacobean matrix from the linear load flow equations. The voltage control areas recognized from the eigenvalues and eigenvectors analysis to each sensitivity matrix are coherent. Also, voltage control areas were identified directly from sensitivity matrixes. These areas were compared founded coherent results.
183

On Computing Multiple Solutions of Nonlinear PDEs Without Variational Structure

Wang, Changchun 2012 May 1900 (has links)
Variational structure plays an important role in critical point theory and methods. However many differential problems are non-variational i.e. they are not the Euler- Lagrange equations of any variational functionals, which makes traditional critical point approach not applicable. In this thesis, two types of non-variational problems, a nonlinear eigen solution problem and a non-variational semi-linear elliptic system, are studied. By considering nonlinear eigen problems on their variational energy profiles and using the implicit function theorem, an implicit minimax method is developed for numerically finding eigen solutions of focusing nonlinear Schrodinger equations subject to zero Dirichlet/Neumann boundary condition in the order of their eigenvalues. Its mathematical justification and some related properties, such as solution intensity preserving, bifurcation identification, etc., are established, which show some significant advantages of the new method over the usual ones in the literature. A new orthogonal subspace minimization method is also developed for finding multiple (eigen) solutions to defocusing nonlinear Schrodinger equations with certain symmetries. Numerical results are presented to illustrate these methods. A new joint local min orthogonal method is developed for finding multiple solutions of a non-variational semi-linear elliptic system. Mathematical justification and convergence of the method are discussed. A modified non-variational Gross-Pitaevskii system is used in numerical experiment to test the method.
184

Matrix methods for computing Eigenvalues of Sturm-Liouville problems of order four

Rattana, Amornrat, Böckmann, Christine January 2012 (has links)
This paper examines and develops matrix methods to approximate the eigenvalues of a fourth order Sturm-Liouville problem subjected to a kind of fixed boundary conditions, furthermore, it extends the matrix methods for a kind of general boundary conditions. The idea of the methods comes from finite difference and Numerov's method as well as boundary value methods for second order regular Sturm-Liouville problems. Moreover, the determination of the correction term formulas of the matrix methods are investigated in order to obtain better approximations of the problem with fixed boundary conditions since the exact eigenvalues for q = 0 are known in this case. Finally, some numerical examples are illustrated.
185

Two problems on inverse eigenvalue problems and Hadamard finite part integrals

Cheang, Ka Hang January 2010 (has links)
University of Macau / Faculty of Science and Technology / Department of Mathematics
186

Variational Spectral Analysis

Sendov, Hristo January 2000 (has links)
We present results on smooth and nonsmooth variational properties of {it symmetric} functions of the eigenvalues of a real symmetric matrix argument, as well as {it absolutely symmetric} functions of the singular values of a real rectangular matrix. Such results underpin the theory of optimization problems involving such functions. We answer the question of when a symmetric function of the eigenvalues allows a quadratic expansion around a matrix, and then the stronger question of when it is twice differentiable. We develop simple formulae for the most important nonsmooth subdifferentials of functions depending on the singular values of a real rectangular matrix argument and give several examples. The analysis of the above two classes of functions may be generalized in various larger abstract frameworks. In particular, we investigate how functions depending on the eigenvalues or the singular values of a matrix argument may be viewed as the composition of symmetric functions with the roots of {it hyperbolic polynomials}. We extend the relationship between hyperbolic polynomials and {it self-concordant barriers} (an extremely important class of functions in contemporary interior point methods for convex optimization) by exhibiting a new class of self-concordant barriers obtainable from hyperbolic polynomials.
187

Efficient Analysis for Nonlinear Effects and Power Handling Capability in High Power HTSC Thin Film Microwave Circuits

Tang, Hongzhen January 2000 (has links)
In this study two nonlinear analysis methods are proposed for investigation of nonlinear effects of high temperature superconductive(HTSC) thin film planar microwave circuits. The MoM-HB combination method is based on the combination formulation of the moment method(MoM) and the harmonic balance(HB) technique. It consists of linear and nonlinear solvers. The power series method treats the voltages at higher order frequencies as the excitations at the corresponding frequencies, and the higher order current distributions are then obtained by using the moment method again. The power series method is simple and fast for finding the output power at higher order frequencies. The MoM-HB combination method is suitable for strong nonlinearity, and it can be also used to find the fundamental current redistribution, conductor loss, and the scattering parameters variation at the fundamental frequency. These two proposed methods are efficient, accurate, and suitable for distributed-type HTSC nonlinearity. They can be easily incorporated into commercial EM CAD softwares to expand their capabilities. These two nonlinear analysis method are validated by analyzing a HTSC stripline filter and HTSC antenna dipole circuits. HTSC microstrip lines are then investigated for the nonlinear effects of HTSC material on the current density distribution over the cross section and the conductor loss as a function of the applied power. The HTSC microstrip patch filters are then studied to show that the HTSCinterconnecting line could dominate the behaviors of the circuits at high power. The variation of the transmission and reflection coefficients with the applied power and the third output power are calculated. The HTSC microstrip line structure with gilded edges is proposed for improving the power handling capability of HTSC thin film circuit based on a specified limit of harmonic generation and conductor loss. A general analysis approach suitable for any thickness of gilding layer is developed by integrating the multi-port network theory into aforementioned proposed nonlinear analysis methods. The conductor loss and harmonic generation of the gilded HTSC microstrip line are investigated.
188

Variational Spectral Analysis

Sendov, Hristo January 2000 (has links)
We present results on smooth and nonsmooth variational properties of {it symmetric} functions of the eigenvalues of a real symmetric matrix argument, as well as {it absolutely symmetric} functions of the singular values of a real rectangular matrix. Such results underpin the theory of optimization problems involving such functions. We answer the question of when a symmetric function of the eigenvalues allows a quadratic expansion around a matrix, and then the stronger question of when it is twice differentiable. We develop simple formulae for the most important nonsmooth subdifferentials of functions depending on the singular values of a real rectangular matrix argument and give several examples. The analysis of the above two classes of functions may be generalized in various larger abstract frameworks. In particular, we investigate how functions depending on the eigenvalues or the singular values of a matrix argument may be viewed as the composition of symmetric functions with the roots of {it hyperbolic polynomials}. We extend the relationship between hyperbolic polynomials and {it self-concordant barriers} (an extremely important class of functions in contemporary interior point methods for convex optimization) by exhibiting a new class of self-concordant barriers obtainable from hyperbolic polynomials.
189

Eigenvalue inequalities for relativistic Hamiltonians and fractional Laplacian

Yildirim Yolcu, Selma 11 November 2009 (has links)
Some eigenvalue inequalities for Klein-Gordon operators and fractional Laplacians restricted to a bounded domain are proved. Such operators became very popular recently as they arise in many problems ranging from mathematical finance to crystal dislocations, especially relativistic quantum mechanics and symmetric stable stochastic processes. Many of the results obtained here are concerned with finding bounds for some functions of the spectrum of these operators. The subject, which is well developed for the Laplacian, is examined from the spectral theory perspective through some of the tools used to prove analogous results for the Laplacian. This work highlights some important results, sparking interest in constructing a similar theory for Klein-Gordon operators. For instance, the Weyl asymptotics and semiclassical bounds for the Klein-Gordon operator are developed. As a result, a Berezin-Li-Yau type inequality is derived and an improvement of the bound is proved in a separate chapter. Other results involving some universal bounds for the Klein-Gordon Hamiltonian with an external interaction are also obtained.
190

Isospectral graph reductions, estimates of matrices' spectra, and eventually negative Schwarzian systems

Webb, Benjamin Zachary 18 March 2011 (has links)
This dissertation can be essentially divided into two parts. The first, consisting of Chapters I, II, and III, studies the graph theoretic nature of complex systems. This includes the spectral properties of such systems and in particular their influence on the systems dynamics. In the second part of this dissertation, or Chapter IV, we consider a new class of one-dimensional dynamical systems or functions with an eventual negative Schwarzian derivative motivated by some maps arising in neuroscience. To aid in understanding the interplay between the graph structure of a network and its dynamics we first introduce the concept of an isospectral graph reduction in Chapter I. Mathematically, an isospectral graph transformation is a graph operation (equivalently matrix operation) that modifies the structure of a graph while preserving the eigenvalues of the graphs weighted adjacency matrix. Because of their properties such reductions can be used to study graphs (networks) modulo any specific graph structure e.g. cycles of length n, cliques of size k, nodes of minimal/maximal degree, centrality, betweenness, etc. The theory of isospectral graph reductions has also lead to improvements in the general theory of eigenvalue approximation. Specifically, such reductions can be used to improved the classical eigenvalue estimates of Gershgorin, Brauer, Brualdi, and Varga for a complex valued matrix. The details of these specific results are found in Chapter II. The theory of isospectral graph transformations is then used in Chapter III to study time-delayed dynamical systems and develop the notion of a dynamical network expansion and reduction which can be used to determine whether a network of interacting dynamical systems has a unique global attractor. In Chapter IV we consider one-dimensional dynamical systems of an interval. In the study of such systems it is often assumed that the functions involved have a negative Schwarzian derivative. Here we consider a generalization of this condition. Specifically, we consider the functions which have some iterate with a negative Schwarzian derivative and show that many known results generalize to this larger class of functions. This includes both systems with regular as well as chaotic dynamic properties.

Page generated in 0.0433 seconds