• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 17
  • 17
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Stability of charged rotating black holes for linear scalar perturbations

Civin, Damon January 2015 (has links)
In this thesis, the stability of the family of subextremal Kerr-Newman space- times is studied in the case of linear scalar perturbations. That is, nondegenerate energy bounds (NEB) and integrated local energy decay (ILED) results are proved for solutions of the wave equation on the domain of outer communications. The main obstacles to the proof of these results are superradiance, trapping and their interaction. These difficulties are surmounted by localising solutions of the wave equation in phase space and applying the vector field method. Miraculously, as in the Kerr case, superradiance and trapping occur in disjoint regions of phase space and can be dealt with individually. Trapping is a high frequency obstruction to the proof whereas superradiance occurs at both high and low frequencies. The construction of energy currents for superradiant frequencies gives rise to an unfavourable boundary term. In the high frequency regime, this boundary term is controlled by exploiting the presence of a large parameter. For low superradiant frequencies, no such parameter is available. This difficulty is overcome by proving quantitative versions of mode stability type results. The mode stability result on the real axis is then applied to prove integrated local energy decay for solutions of the wave equation restricted to a bounded frequency regime. The (ILED) statement is necessarily degenerate due to the trapping effect. This implies that a nondegenerate (ILED) statement must lose differentiability. If one uses an (ILED) result that loses differentiability to prove (NEB), this loss is passed onto the (NEB) statement as well. Here, the geometry of the subextremal Kerr-Newman background is exploited to obtain the (NEB) statement directly from the degenerate (ILED) with no loss of differentiability.
12

An Analysis of the 5D Stationary Bi-Axisymmetric Soliton Solution to the Vacuum Einstein Equations / On the 5D Soliton Solution of the Vacuum Einstein Equations

Zwarich, Sebastian 11 1900 (has links)
We set out to analyze 5D stationary and bi-axisymmetric solutions to the vacuum Einstein equations. These are in the cohomogeneity 2 setting where the orbit space is a right half plane. They can have a wide range of behaviour at the boundary of the orbit space. The goal is to understand in detail the soliton example in Khuri, Weinstein and Yamada's paper ``5-dimensional space-periodic solutions of the static vacuum Einstein equations". This example is periodic and has alternating axis rods as its boundary data. We start by deriving the harmonic equations which determines the behaviour of the metric in the interior of the orbit space. Then we analyze what conditions the boundary data imposes on the metric. These are called the smoothness conditions which we derive for solely the alternating axis rod case. We show that with an ellipticity assumption they predict that the twist potentials are constant and that the metric is of the form which appears in Khuri, Weinstein and Yamada's paper. We then analyze the Schwarzschild metric in its standard form which is cohomogeneity 1 and its Weyl form which is cohomogeneity 2. This Weyl form can be made periodic and this serves as an inspiration for the examples in Khuri, Weinstein and Yamada's paper. Finally we analyze the soliton example in detail and show that it satisfies the smoothness conditions. We then provide a new example which has a single axis rod on the boundary with non-constant twist potentials but that is missing a point on the boundary. / Thesis / Master of Science (MSc) / We study the geometry of 5D blackholes. These blackholes are idealized by certain spatial symmetries and time invariance. They are solutions to the vacuum Einstein equations. The unique characteristic of these blackholes is the range of behaviour they may exhibit at the boundary of the domain of outer communication. There could be a standard event horizon called a horizon rod or an axis rod where a certain part of the spatial symmetry becomes trivial. In this thesis we start by deriving the harmonic map equations which are satisfied in the interior of the domain of communication. Then we show how this boundary data affects the metric through the smoothness conditions. We then analyze the soliton example in a paper by Khuri, Weinstein and Yamada and show that it respects the smoothness conditions. We then provide a new example which is interesting in the fact it has non-constant twist potentials.
13

Topics on Gravity Outside of Four Dimensions

Bouchareb, Adel 14 September 2011 (has links) (PDF)
The thesis is divided into two loosely connected parts: the first one is concerned with three dimensional Topologically massive gravity (TMG) and the other is devoted to generating solutions of black objects within five minimal dimensional supergravity theory (mSUGRA5).
14

Δυισμοί στη γραμμικοποιημένη βαρύτητα

Μυλωνάς, Διονύσιος 07 July 2010 (has links)
Στη γραμμική εκδοχή της γενικής θεωρίας της σχετικότητας, θεωρεί κανείς τις διαταραχές κάποιας μετρικής γύρω από κάποιο χωροχρονικό υπόβαθρο. Κρατώντας όρους διαταραχών μέχρι και πρώτης τάξεως, οδηγείται κανείς στις γραμμικές εξισώσεις Einstein. Σε αυτό το πλαίσιο αποδεικνύεται μια σχέση δυισμού ανάμεσα στα διάφορα στοιχεία του τανυστή Weyl, αντίστοιχη με το δυισμό ανάμεσα στην ηλεκτρική και τη μαγνητική ροή της ηλεκτρομαγνητικής θεωρίας του Maxwell. Στην εργασία αυτή κάνουμε μία ανασκόπηση της έρευνας που έχει γίνει μέχρι τώρα αναφορικά με αυτές τις σχέσεις δυισμού. Πιο συγκεκριμένα, εξετάζουμε την ισχύ των σχέσεων στον Anti-de Sitter χωρόχρονο και επισημαίνουμε το τρόπο με τον οποίο κατασκευάζει κανείς δυικές δομές από τις εκφράσεις για τις διαταραχές. Επίσης, χρησιμοποιώντας τη τεχνική της ολογραφικής επανακανονικοποίησης, εξετάζουμε το σύμμορφο σύνορο του χωροχρόνου. Βρίσκουμε εκεί μια σχέση δυισμού ανάμεσα στα στοιχεία του τανυστή ενέργειας-ορμής και του τανυστή Cotton της αντίστοιχης Chern - Simons θεωρίας, η οποία αποδεικνύεται ότι είναι άμεση συνέπεια του δυισμού στο AdS υπόβαθρο. Τέλος, εφαρμόζουμε την ίδια συλλογιστική στο Schwarzschild - Anti-de Sitter υπόβαθρο, όπου η παρουσία της μελανής οπής διαφοροποιεί τις συνοριακές συνθήκες του προβλήματος. Λόγω αυτού του γεγονός δεν μπορεί να πει κανείς με σιγουριά εάν μπορούν να διατυπωθούν σχέσεις δυισμού σε αυτή τη περίπτωση. Παρόλα αυτά βρίσκουμε ότι ισχύουν σχέσεις δυισμού στο σύμμορφο σύνορο παρόμοιες με αυτές του AdS υποβάθρου, πράγμα που σημαίνει ότι στο σύστημα παραμένει κάποια συμμετρία από τη γραμμική θεωρία. Η εργασία καταλήγει σε σχόλια και μία εκτενή συζήτηση για τις πιθανές μελλοντικές κατευθύνσεις. / In the linear version of the general theory of relativity, one considers metric perturbations around a fixed background. Keeping terms up to first order of perturbation leads to the linearized Einstein equations. In this framework it has been proved that a duality between the various elements of the Weyl tensor holds. This duality is similar to the one between the electric and magnetic fluxes of Maxwell's electromagnetism. In the present work we review the status of these dualities for non trivial backgrounds. We examine the Anti-de Sitter background, where we point out the way to explicitly construct dual configurations using the metric perturbation expressions. Using the holographic renormalization technique, we examine the conformal boundary where a duality between the components of the energy-momentum tensor and the Cotton tensor of the corresponding Chern - Simons theory holds. It is then proved that this duality is a direct consequence of the electric/magnetic duality in the bulk, in the case of the AdS background. Finally, we apply same procedure to the Schwarzschild - Anti-de Sitter background, where the presence of the black hole changes the boundary conditions of the problem. This simple fact makes it impossible say whether such a duality exists in this case. Nevertheless, we find that a duality similar to that of the AdS background still holds for the conformal boundary, which means that there is a remnant of symmetry from the linear theory. We conclude with comments and a extensive discussion on possible future directions.
15

Strong Cosmic Censorship and Cosmic No-Hair in spacetimes with symmetries

Radermacher, Katharina Maria January 2017 (has links)
This thesis consists of three articles investigating the asymptotic behaviour of cosmological spacetimes with symmetries arising in Mathematical General Relativity. In Paper A and B, we consider spacetimes with Bianchi symmetry and where the matter model is that of a perfect fluid. We investigate the behaviour of such spacetimes close to the initial singularity ('Big Bang'). In Paper A, we prove that the Strong Cosmic Censorship conjecture holds in non-exceptional Bianchi class B spacetimes. Using expansion-normalised variables, we further show detailed asymptotic estimates. In Paper B, we prove similar estimates in the case of stiff fluids. In Paper C, we consider T2-symmetric spacetimes satisfying the Einstein equations for a non-linear scalar field. To given initial data, we show global existence and uniqueness of solutions to the corresponding differential equations for all future times. In the special case of a constant potential, a setting which is equivalent to a linear scalar field on a background with a positive cosmological constant, we investigate in detail the asymptotic behaviour towards the future. We prove that the Cosmic No-Hair conjecture holds for solutions satisfying an additional a priori estimate, an estimate which we show to hold in T3-Gowdy symmetry. / Denna avhandling består av tre artiklar som undersöker det asymptotiska beteendet hos kosmologiska rumstider med symmetrier som uppstår i Matematisk Allmän Relativitetsteori. I Artikel A och B studerar vi rumstider med Bianchi symmetri och där materiemodellen är en ideal fluid. Vi undersöker beteendet av sådana rumstider nära ursprungssingulariteten ('Big Bang'). I Artikel A bevisar vi att den Starka Kosmiska Censur-förmodan håller för icke-exceptionella Bianchi klass B-rumstider. Med hjälp av expansions-normaliserade variabler visar vi detaljerade asymptotiska uppskattningar. I Artikel B visar vi liknande uppskattningar för stela fluider. I Artikel C betraktar vi T2-symmetriska rumstider som uppfyller Einsteins ekvationer för ett icke-linjärt skalärfält. För givna begynnelsedata visar vi global existens och entydighet av lösningar till motsvarande differentialekvationer för all framtid. I det speciella fallet med en konstant potential, en situation som motsvarar ett linjärt skalärfält på en bakgrund med en positiv kosmologisk konstant, undersöker vi i detalj det asymptotiska beteendet mot framtiden. Vi visar att den Kosmiska Inget-Hår-förmodan håller för lösningar som uppfyller en ytterligare a priori uppskattning, en uppskattning som vi visar gäller i T3-Gowdy-symmetri. / <p>QC 20171220</p>
16

Les bulles de masse négative dans un espace de de Sitter.

Mbarek, Saoussen 12 1900 (has links)
Nous étudions différentes situations de distribution de la matière d’une bulle de masse négative. En effet, pour les bulles statiques et à symétrie sphérique, nous commençons par l’hypothèse qui dit que cette bulle, étant une solution des équations d’Einstein, est une déformation au niveau d’un champ scalaire. Nous montrons que cette idée est à rejeter et à remplacer par celle qui dit que la bulle est formée d’un fluide parfait. Nous réussissons à démontrer que ceci est la bonne distribution de matière dans une géométrie Schwarzschild-de Sitter, qu’elle satisfait toutes les conditions et que nous sommes capables de résoudre numériquement ses paramètres de pression et de densité. / We study different situations of matter distribution of a negative mass bubble. For the case of static and spherically symmetric bubbles, we start with the hypothesis saying that this kind of bubble, being a solution of Einstein equations, is a deformation of scalar field. We show that this idea must be rejected and replaced by another saying that the bubble is formed by a perfect fluid. We succeed to demonstrate that this is the proper matter distribution within Schwarzschild-De Sitter geometry, that it satisfies all conditions and that we’re capable of resolving numerically its parameters of pressure and density.
17

Les bulles de masse négative dans un espace de de Sitter

Mbarek, Saoussen 12 1900 (has links)
No description available.

Page generated in 0.1142 seconds