• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 11
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 112
  • 112
  • 28
  • 16
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Avaliação ambiental de diferentes formas de geração de energia elétrica

GUENA, ANA M. de O. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:52:35Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:01:39Z (GMT). No. of bitstreams: 0 / No mundo moderno a energia elétrica tem um papel fundamental; ela é a base do progresso e desenvolvimento mundial. O seu surgimento propiciou a melhora no saneamento, na saúde, no abastecimento de água e alimentos, na qualidade de vida e também fez surgir a sociedade capitalista e de consumo. A utilização do petróleo como fonte geradora de energia foi o impulso da revolução industrial e através dele foram desenvolvidos motores, geradores e máquinas que contribuíram para o progresso. Com isto veio também a emissão de gases (CO2, CO, SOX e NOX) e outras substâncias que agravaram o efeito estufa, o buraco na camada de ozônio e a chuva ácida alterando o equilíbrio do planeta. O desenvolvimento de outras formas de geração de energia provocou mudanças nos locais onde estas foram instaladas, impactando o meio ambiente. Este trabalho apresenta uma avaliação ambiental sobre as diferentes formas de geração de energia elétrica e os impactos ambientais pertinentes a cada uma delas. Inclui cinco formas de geração de energia elétrica: termelétrica, nuclear, hidrelétrica, eólica e solar. No tópico energia termelétrica apresenta-se a geologia do petróleo, a sua extração e beneficiamento. Mostra também a descoberta e o desenvolvimento da indústria petrolífera no mundo e no Brasil. Detalha o funcionamento de três tipos de centrais termelétricas: a carvão, a gás e a óleo. São relacionados os impactos ambientais comuns a elas e os característicos de cada tipo de usina. Assim como o decorrente da desativação de cada uma delas. É apresentado um pequeno histórico da energia nuclear, seu desenvolvimento no Brasil e no mundo, bem como o funcionamento de uma usina e os impactos causados durante a sua operação e seu descomissionamento. A história, o funcionamento e o avanço da energia hidrelétrica no Brasil, as grandes usinas e a sua relação com o meio ambiente, são mostrados juntamente com os impactos ambientais na sua implantação, operação e desativação. A energia eólica é mostrada desde a sua implantação e funcionamento até os impactos ambientais decorrentes do processo de geração de energia elétrica e da sua desativação. No caso da energia solar é apresentado o funcionamento dos painéis solares, a implantação da central e os impactos ambientais relacionados a utilização desta. Os impactos originados na sua desativação também são apresentados. Destacados os impactos ambientais para cada forma de geração de energia elétrica, estes são correlacionados e comparados pela área de implantação da usina, a capacidade de geração, a eficiência, a potência e o custo do kW. Não existe uma forma totalmente limpa de geração de energia elétrica. Existem, sim, formas que não emitem os gases responsáveis pelo efeito estufa. Assim, todas as formas de geração de energia são importantes para um país, ou seja, quanto mais diversificada for a matriz energética, melhor. / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
102

Geração núcleo-elétrica: retrospectiva, situação atual e perspectivas futuras

MONGELLI, SARA T. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:51:40Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:10:33Z (GMT). No. of bitstreams: 0 / A primeira reação nuclear em cadeia autosustentada controlada foi obtida em 2 de dezembro de 1942. Daí em diante, o crescimento da energia nuclear, inicialmente estimulado por fins militares, foi rápido. Ás aplicações civis no setor da geração de eletricidade foram adquirindo, ao longo do tempo, um papel sempre mais importante nas matrizes energéticas de muitos paises. Em 1987, 418 reatores nucleares no mundo estavam produzindo eletricidade em escala comercial. Dois terços destes reatores eram localizados em 7 países: Estados Unidos, União Soviética, França, Reino Unido, Alemanha, Canadá e Japão. Nos anos 90, o setor nuclear experimentou um grande retardo, devido principalmente ao acidente de Chernobyl e a uma revisão otimista das perspectivas de esgotamento das reservas de petróleo e dos outros combustíveis fosseis. Em 2005 o número de reatores para geração de eletricidade em operação no mundo era de 441, não muito diferente do numero de reatores em operação em 1987. Neste panorama o primeiro objetivo deste trabalho é analisar o estado da arte da geração núcleo elétrica e do ciclo do combustível nos países acima mencionados, partindo de uma revisão histórica. O caso do Brasil é abordado também por ser o país onde este trabalho é desenvolvido. Uma vez concluído o quadro da geração núcleo elétrica a nível internacional, são analisadas as novas tecnologias no setor da geração núcleo elétrica e as tendências e as iniciativas para o futuro da utilização da energia nuclear. São também abordadas as principais questões que sempre acompanharam o debate sobre a energia nuclear: a segurança, o meio ambiente, a proliferação e o mais moderno conceito de desenvolvimento sustentável. É importante antecipar que o objetivo deste trabalho não é de julgar os acontecimentos e de influenciar a opinião do leitor a favor da energia nuclear, mas de selecionar materiais e dados para informar e assim fornecendo um texto que seja uma coleção de informações e sugestões de aprofundamentos e não uma fonte de polêmicas. / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
103

Controladores fuzzy aplicados em um sistema de geração de energia elétrica embarcado em tratores para o acionamento de implementos agrícolas / Fuzzy controllers applied to an electrical power generation system boarded on tractors for driving agricultural implements

Soares, Fabricio Theodoro, 1990- 28 August 2018 (has links)
Orientadores: Nelson Luís Cappelli, Angel Pontin Garcia / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola / Made available in DSpace on 2018-08-28T23:36:41Z (GMT). No. of bitstreams: 1 Soares_FabricioTheodoro_M.pdf: 2400954 bytes, checksum: 4a1e02ac967af05d5cfed7087bfc3bf4 (MD5) Previous issue date: 2015 / Resumo: O acionamento de máquinas e implementos agrícolas normalmente é efetuado por sistemas mecânicos e hidráulicos. No entanto, a demanda da indústria agrícola por operações de maior complexidade impulsiona o desenvolvimento de alternativas para o acionamento destas máquinas, como a utilização de implementos elétricos. Visando o fornecimento de energia elétrica para o uso em implementos agrícolas, este trabalho propõe um sistema que utiliza a tomada de potência do trator para acionar um gerador síncrono, utilizando um controlador com lógica fuzzy, projetado para regular o nível de tensão gerada. Foram testadas e avaliadas, por simulações, diferentes arquiteturas de controle. Na primeira etapa avaliaram-se controladores fuzzy PI, PD e PID de múltiplas entradas e única saída e o erro da tensão gerada como variável de estado. Posteriormente avaliou-se um controlador fuzzy PI de única entrada e múltiplas saídas com uma base de regras modificada para o sistema. Na terceira etapa incluiu-se a velocidade angular de acionamento como variável de estado do controlador. O comportamento de cada arquitetura foi analisado por meio de índices de desempenho. Os resultados mostram a capacidade do sistema e o controlador fuzzy PI modificado em operar frente aos distúrbios aplicados, mantendo as variáveis de operação dentro dos limites estabelecidos / Abstract: The drive of agricultural machinery and implements is normally done by mechanical and hydraulic systems. However, the demand of the agricultural industry by more complex operations motivates the development of alternative drives for these machines, such as the use of electrical implements. Aiming an electrical supply for use by agricultural implements, this paper proposes a system that uses the tractor power take-off to drive a synchronous generator, using a fuzzy logic controller designed to regulate the generated voltage level. Different control architectures were tested and evaluated by simulations. In the first stage were evaluated PI, PD and PID fuzzy controllers of multiple inputs and single output and the error of the generated voltage as state variable. Subsequently, it was evaluated a PI fuzzy controller of single input and multiple outputs with a modified rule base for the system. In the third step, the angular drive speed was included as state variable of the controller. The behavior of each architecture was analyzed by means of performance indicators. The results show the system capability and the modified PI fuzzy controller to operate front of the applied disturbances, keeping the operation variables within the established limits / Mestrado / Maquinas Agricolas / Mestre em Engenharia Agrícola
104

A microprocessor based excitation system simulator /

Cunha-Gomes, Keith January 1983 (has links)
No description available.
105

Effect Of Coriolis And Centrifugal Forces On Turbulence And Transport At High Rotation And Buoyancy Numbers

Sleiti, Ahmad Khalaf 01 January 2004 (has links)
This study attempts to understand one of the most fundamental and challenging problems in fluid flow and heat transfer for rotating machines. The study focuses on gas turbines and electric generators for high temperature and high energy density applications, respectively, both which employ rotating cooling channels so that materials do not fail under high temperature and high stress environment. Prediction of fluid flow and heat transfer inside internal cooling channels that rotate at high rotation number and high density ratio similar to those that are existing in turbine blades and generator rotors is the main focus of this study. Both smooth-wall and rib-roughened channels are considered here. Rotation, buoyancy, bends, ribs and boundary conditions affect the flow inside theses channels. Ribs are introduced inside internal cooling channel in order to enhance the heat transfer rate. The use of ribs causes rapid increase in the supply pressure, which is already limited in a turbine or a generator and requires high cost for manufacturing. Hence careful optimization is needed to justify the use of ribs. Increasing rotation number (Ro) is another approach to increase heat transfer rate to values that are comparable to those achieved by introduction of ribs. One objective of this research is to study and compare theses two approaches in order to decide the optimum range of application and a possible replacement of the high-cost and complex ribs by increasing Ro. A fully computational approach is employed in this study. On the basis of comparison between two-equation (k-[epsilon] and k-[omega]) and RSM turbulence models, against limited available experimental data, it is concluded that the two-equation turbulence models cannot predict the anisotropic turbulent flow field and heat transfer correctly, while RSM showed improved prediction. For the near wall region, two approaches with standard wall functions and enhanced near wall treatment were investigated. The enhanced near wall approach showed superior results to the standard wall functions approach. Thus RSM with enhanced near wall treatment is validated against available experimental data (which are primarily at low rotation and buoyancy numbers). The model was then used for cases with high Ro (as much as 1.29) and high-density ratios (DR) (up to 0.4). Particular attention is given to how turbulence intensity, Reynolds stresses and transport are affected by Coriolis and buoyancy/centrifugal forces caused by high levels of Ro and DR. Variations of flow total pressure along the rotating channel are also predicted. The results obtained are explained in view of physical interpretation of Coriolis and centrifugal forces. Investigation of channels with smooth and with rib-roughened walls that are rotating about an orthogonal axis showed that increasing Ro always enhances turbulence and the heat transfer rate, while at high Ro, increasing DR although causes higher turbulence activity but does not necessarily increase Nu and in some locations even decreases Nu. The increasing thermal boundary layer thickness near walls is the possible reason for this behavior of Nu. The heat transfer enhancement for smooth-wall cases correlates linearly with Ro (with other parameters are kept constant) and hence it is possible to derive linear correlation for the increase in Nu as a function of Ro. Investigation of channels with rib-roughened walls that rotate about orthogonal axis showed that 4-side-average Nur correlates with Ro linearly, where a linear correlation for Nur/Nus as a function of Ro is derived. It is also observed that the heat transfer rate on smooth-wall channel can be enhanced rapidly by increasing Ro to values that are comparable to the enhancement due to the introduction of ribs inside internal cooling channels. This observation suggests that ribs may be unnecessary in high-speed machines, and has tremendous implications for possible cost savings in these machines. In square channels that rotate about parallel axis, the heat transfer rate enhances with Ro on three surfaces of the square channel and decreases on the inner surface (that is the one closest to the axis of rotation). However, the four-sides average Nu increases with Ro. Increasing wall heat flux at high Ro does not necessarily increase Nu on walls although higher turbulence activity is observed. This study examines the rich interplay of physics under the simultaneous actions of Coriolis and centrifugal/buoyancy forces in one of the most challenging internal flow configurations. Several important conclusions are reached from this computational study that may have far-reaching implications on how turbine blades and generator rotors are currently designed. Since the computation study in not validated for high Ro cases, these important results call for a experimental investigation.
106

Investigation into the correlation between paper insulation thermal ageing estimation using the arrhenius equation and other methods for generator transformers

Metebe, Michael Tebogo January 2015 (has links)
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science in Engineering Date submitted: 28 August 2015 / Many generator transformers were installed many years ago during the initial commissioning of Eskom’s power stations. Many of these transformers have started showing signs of significant ageing of the paper insulation and hence require regular monitoring. There are two methods that are currently being employed to assess the degree of ageing of the paper insulation in a generator transformer, which are paper sampling and furan level measurement. This dissertation investigates an alternative method of predicting the degree of ageing of the paper insulation instead of what is used currently. This method uses the Arrhenius equation that relates time and temperature to determine the degree of degradation of organic materials. The reliability of the Arrhenius estimation method is assessed by comparing the predicted DP (Degree of polymerisation) values with the measured DP values of the same transformer paper insulation. The results obtained showed that there is reasonable correlation between the DP values estimated from the Arrhenius equation and the DP values estimated from the measured furan levels. The accuracy of the prediction method is reduced when the oil temperature greatly differs from the paper insulation temperature. The application of the Arrhenius equation to estimate the ageing of paper insulation is a great milestone in the quest to predict the remaining life of a transformer. It is the only method available to do this prediction and using online temperature measurement on transformers makes the method more reliable. / MT 2017
107

A Mixed Integer Linear Unit Commitment and Economic Dispatch Model for Thermo-Electric and Variable Renewable Energy Generators With Compressed Air Energy Storage

Nikolakakis, Thomas January 2017 (has links)
The objective of this PhD thesis is to create a Unit Commitment and Economic Dispatch (UCED) modelling tool that can used to simulate the deterministic performance of a power system with thermal and renewable generators and energy storage technologies. The model was formulated using mixed integer programing (MIP) on GAMS interface. A robust commercial solver by IBM (CPLEX) is used as solver. Emphasis on the development of the tool has been given on the following aspects. a) Technical impacts of Variable Renewable Energy (VRE) integration. The UCED model developed in this thesis is a high resolution short-term dispatch model. It captures the variability of VRE power on the intra-hour level. In addition the model considers a large number of important real world, system, unit and policy constraints. Detailed representation of a power system allows for a realistic estimation of maximum penetration levels of VRE and the related technical impacts like cycling of generators (part-loading and number of start-ups). b) CO2 emissions. High levels of VRE penetration can potentially increase consumption of fuel in thermal units per unit of electricity produced due to increased thermal cycling. The dispatch of units in the UCED model is based on minimizing system wide operational costs the most important of those being fuel, start-up costs and the cost of carbon. Fuel consumption is calculated using technical data from Input/Output curves of individual generators. The start-up cost is calculated based on times the generator units have been off and the energy requirement to bring the unit back to hot state. Thus dynamic changes on fuel consumption can be captured and reported. c) Technical solutions to facilitate VRE integration. VRE penetration can be facilitated if appropriate solutions are implemented. Energy storage is an effective way to reduce the impact of RE variability. The UCED model includes an integrated Mixed Integer Linear (MILP) compressed air energy storage (CAES) simulation sub-model. Unlike existing CAES models, the new “Thermo-Economic” (TE) CAES model developed in this thesis uses technical data from major CAES manufacturers to model the dynamic effect of cavern pressure on both the compression and expansion sides during CAES operation. More specifically the TE model takes into account that a) a compressor discharges at a pressure equal to the back-pressure developed in the cavern at each moment, b) the speed of charging can be regulated through inlet guide vanes; higher charging speed can take place at the expense of additional power consumption, c) the maximum power output during expansion can be limited by the levels of cavern pressure; there is a threshold pressure level below which the maximum output decreases linearly with pressure. Since it uses actual power curves to simulate CAES operation, the TE model can be assumed to be more accurate than conventional Fixed Parameter (FP) models that don’t model dynamic effects of cavern pressure on CAES operation. The TE model in this thesis is compared with conventional FP models using historical market prices from the Irish electricity market. The comparison was based on the ability of a CAES unit to arbitrage energy for making profit in the Irish electricity market. More specifically a “Base” scenario was created that included the operation of a 270MW CAES unit with technical characteristics obtained from a major CAES manufacturer and assumed discharge time of 13hr. Various sensitivities on discharge time, natural gas prices and system marginal prices (SMPs) were modeled. An additional scenario was created to show the benefit on CAES profitability if the unit participated in both the energy and ancillary services markets. All scenarios were modeled using both the TE and FP CAES models. The results showed that the most realistic TE model returns around 15% less profitability across more scenarios. The reduction in profitability grows to around 30% when the cavern volume (discharge time) is reduced to half (6 hours). The latter is related to the sensitivity of the TE model on cavern pressure that is being built faster when the volume is reduced. A CAES unit won’t get a positive net present value (NPV) in Ireland under any scenario unless SMPs are greatly increased. Thus, it was shown that that existing FP CAES models overestimate CAES profitability. More accurate models need to be used to estimate CAES profitability in deregulated markets. Additionally, it might deem necessary to create additional markets for energy storage units and increase the possible revenue sources and magnitude to facilitate an increase of storage capacity worldwide. The second step of analysis involved the integration of the CAES and UCED models. The UCED model developed in this thesis was validated and applied using data from the Irish grid, a power system with more than 50 thermal generators. A vast of existent data was used to create a mathematical model of the Irish system. Such data include technical specifications and variables of thermal generators, maintenance schedules and historical solar, wind and demand data. The validation exercise was deemed successful since the UCED model simulated utilization factors of 45 out of 52 generators with an absolute difference between modeled and actual results on utilization factors of less than 6% (the absolute differences are called Delta in this thesis). In addition the results of validation exercise were compared with the results of a similar exercise where PLEXOS was the modelling tool and it was found that the results of the two models were similar for the vast majority of generators. More specifically, the PLEXOS model results showed higher deltas for the coal-fired generators compared to the UCED model. On the other hand the UCED model, reported higher delta values for peat-fired generators. The results of the PLEXOS model were slightly better for the gas-fired generators while both models reported deltas nearly zero for all oil and distillate-fired generators. Finally the model was applied to study the benefits of energy storage in Ireland in 2020 when wind penetration is expected to reach 37% of total demand. The analysis involved the development of two groups of 3 scenarios each. In the first group the main scenario also called the “Reference” was used to simulate the short-term unit (30 min step) commitment within the Irish system without storage. The results of the reference scenario were compared with two additional scenarios that assumed the existence of one 270MW CAES unit in Northern Ireland by 2020 (again the first scenario involved the TE and the second the FP CAES model). The results showed –when using the TE model- that the inclusion of one 270MW CAES unit in AI can help reduce wind curtailment by 88GWh, CO2 emissions by 150,000 tonnes and system costs by € 6 million per year. If an FP model had been used instead the reductions would be: wind curtailment by 108GWh, CO2 emissions by 270,000 tonnes and annual system costs by €13 million. Two main conclusions can be obtained from the specific set of results. The first conclusion is that storage units have a financial benefit over the whole system. Thus, when a CAES unit operates to minimize the costs of the whole system can incur substantially more benefits compared to if the CAES unit operated to maximize the individual unit’s profits as in the case presented earlier. The benefits of storage over the whole system should be accounted to make policy decisions and create incentives for investors to increase energy storage capacity in national grids. The second important conclusion is that existing CAES FP models overestimate the ability of a CAES unit to facilitate VRE penetration. More accurate TE models should be used to assess a unit’s capability to increase system flexibility. A second group of scenarios was created to simulate the benefit of CAES at even higher VRE penetration levels. In the second group the “Reference” scenario again, assumed no storage however, wind production was increased by 25%. Again the “Reference” was compared with two additional scenarios that assumed integration of 3x270MW=810MW of storage capacity in AI (one scenario used the TE model and the other the FP). The results for the TE model show that each of the 3 CAES units reduces wind curtailment by 188,000MWh, total system costs by €29 million and CO2 emissions by 180,000 tonnes. The same reductions for the FP model are 217,000MWh of wind curtailment, €25.6 million on total system costs and 180,000 tonnes of CO2. Thus, the results of the second group of scenarios show that as the installed capacity of both CAES and wind increases in Ireland a) the system-wide benefits of CAES increase and b) the differences on results between the TE and FP models become much smaller.
108

Winding short-circuit fault modelling and detection in doubly-fed induction generator based wind turbine systems

Zafar, Jawwad 13 October 2011 (has links)
Abstract<p><p>This thesis deals with the operation of and winding short-circuit fault detection in a Doubly-Fed Induction Generator (DFIG) based Wind Turbine Generator System (WTGS). Both the faulted and faultless condition of operation has been studied, where the focus is on the electrical part of the system. The modelled electrical system is first simulated and the developed control system is then validated on a test bench. The test-bench component dimensioning is also discussed.<p><p>The faultless condition deals with the start-up and power production mode of operation. Control design based on the Proportional Integral (PI) control technique has been compared for power and torque control strategies against the Linear Quadratic Gaussian (LQG) control technique, at different operating points through the variable-speed region of WTGS operation following the maximum power curve of the system. It was found that the torque control strategy offered less degradation in performance for both the control techniques at operating points different for the one for which the control system was tuned. The start-up procedure of the DFIG based WTGS has been clarified and simplified. The phase difference between the stator and the grid voltage, which occurs due to the arbitrary rotor position when the rotor current control is activated, is minimized by using a sample-and-hold technique which eliminates the requirement of designing an additional controller. This method has been validated both in simulation and experiments.<p><p>The faulted condition of operation deals with the turn-turn short-circuit fault in the phase winding of the generator. The model of the generator, implemented using the winding-function approach, allows the fault to be created online both in a stator and a rotor phase. It has been demonstrated that the magnitude of the current harmonics, used extensively in literature for the Machine Current Signature Analysis (MCSA) technique for winding short-circuit fault detection, is very different when the location of the fault is changed to another coil within the phase winding. This makes the decision on the threshold selection for alarm generation difficult. Furthermore, the control system attenuates the current harmonics by an order of magnitude. This attenuation property is also demonstrated through experiments. The attention is then shifted to the negative-sequence current component, resulting from the winding unbalance, as a possible fault residual. Its suitability is tested in the presence of noise for scenarios with different fault locations, fault severity in terms of the number of shorted-turns and grid voltage unbalance. It is found that due to the presence of a control system the magnitude of the negative-sequence current, resulting from the fault, remains almost the same for all fault locations and fault severity. Thus, it was deemed more suitable as a fault residual. In order to obtain a fast detection method, the Cumulative Sum (CUSUM) algorithm was used. The test function is compared against a threshold, determined on the basis of expected residual magnitude and the time selected for detection, to generate an alarm. The validation is carried out with noise characteristics different from the ones used during the design and it is shown that the voltage unbalance alone is not able to trigger a false alarm. In all the scenarios considered, the detection was achieved within 40 ms despite the presence of measurement filters. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
109

Sensor fault diagnosis for wind-driven doubly-fed induction generators

Galvez Carrillo, Manuel Ricardo 05 January 2011 (has links)
Among the renewable energies, wind energy presents the highest growth in installed capacity and penetration in modern power systems. This is why reliability of wind turbines becomes an important topic in research and industry. To this end, condition monitoring (or health monitoring) systems are needed for wind turbines. The core of any condition monitoring system (CMS) are fault diagnosis algorithms whose task is to provide early warnings upon the occurrence of incipient (small magnitude) faults. Thanks to the use of CMS we can avoid premature breakdowns and reduce significatively maintenance costs.<p><p>The present thesis deals with fault diagnosis in sensors of a doubly-fed induction generator (DFIG) for wind turbine (WT) applications. In particular we are interested in performing fault detection and isolation (FDI) of incipient faults affecting the measurements of the three-phase signals (currents and voltages) in a controlled DFIG. Although different authors have dealt with FDI for sensors in induction machines and in DFIGs, most of them rely on the machine model with<p>constant parameters. However, the parameter uncertainties due to changes in the operating conditions will produce degradation in the performance of such FDI systems.<p><p>In this work we propose a systematic methodology for the design of sensor FDI systems with the following characteristics: i) capable of detecting and isolating incipient additive (bias, drifts) and multiplicative (changes in the sensor<p>gain) faults, ii) robust against changes in the references/disturbances affecting the controlled DFIG as well as modelling/parametric uncertainties, iii) residual generation system based on a multi-observer strategy to enhance the isolation process, iv) decision system based on statistical-change detection algorithms to treat the entire residual and perform fault detection and isolation at once.<p><p>Three novel sensor FDI approaches are proposed. The first is a signal-based approach, that uses the model of the balanced three-phase signals (currents or voltages) for residual generation purposes. The second is a model-based approach<p>that accounts for variation in the parameters. Finally, a third approach that combines the benefits of both the signal- and the model-based approaches is proposed. The designed sensor FDI systems have been validated using measured voltages, as well as simulated data from a controlled DFIG and a speed-controlled induction<p>motor. <p><p>In addition, in this work we propose a discrete-time multiple input multiple output (MIMO) regulator for each power converter, namely for the rotor side converter (RSC) and for the grid side converter (GSC). In particular, for RSC<p>control, we propose a modified feedback linearization technique to obtain a linear time invariant (LTI) model dynamics for the compensated DFIG. The novelty of this approach is that the compensation does not depend on highly uncertain parameters such as the rotor resistance. For GSC control, a LTI model dynamics<p>is derived using the ideas behind feedback linearization. The obtained LTI model dynamics are used to design Linear Quadratic Gaussian (LQG) regulators. A single design is needed for all the possible operating conditions. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
110

Setting frequency relays and voltage relays to protect synchronous distributed generators against islanding and abnormal frequencies and voltages

Babi, Bombay 11 1900 (has links)
This study concerns frequency relays and voltage relays applied to the protection of synchronous distributed generators operating in reactive power control mode without a frequency regulation function. The effect of active and reactive powers combination, load power factor, and reactive power imbalance are investigated for their implication for the anti-islanding setting of the frequency relay. Results reveal that the effect of these factors must be considered when setting the relay for islanding detection. For the voltage relay, results reveal that the effect of active and reactive powers combination, load power factor, and active power imbalance must be considered when setting the relay for islanding detection. The effect of multi-stage tripping on the frequency relay ability to detect island was also investigated. Results show that multistage tripping can improve the anti-islanding performance of the frequency relay. / Electrical Engineering / M. Tech. (Electrical Engineering)

Page generated in 0.0564 seconds