Spelling suggestions: "subject:"electricity 1generation"" "subject:"electricity 4egeneration""
61 |
A framework for electricity generation opportunities in the South African integrated iron and steel industry : the ArcelorMittal Newcastle case / Marais, B.Marais, Brendan January 2011 (has links)
Electricity availability and the costs thereof in South Africa were traditionally considered an abundant and low cost commodity, but in recent years this situation has changed altogether. Industries are challenged by a strained national electricity grid and tariff increases more than four times the national inflation rate over the past two years, with further tariff increases expected in subsequent years; thus, exposing industries to significant business risks that may jeopardise the sustainability of industries. With the majority of the national electricity supply derived from coal, South Africa's push to reduce carbon emissions exerts even more pressure on industries as electricity usage is inextricably linked to its carbon footprint. In addition, South Africa's reliance on cogeneration from industries for its 2010 - 2030 electricity capacity plan further promotes industries to become more self–sufficient concerning electricity generation. In view of the above, there is a need in the South African integrated iron and steel industry for a framework that collectively addresses the governing factors pertaining to electricity generation in this industry, technical and economical quantification of available technologies and implementation of these technologies. This dissertation researches the current driving/governing and the remediating factors to become more self–sufficient in terms of electricity generation. A framework for electricity generation opportunities in the integrated iron and steel industry is developed from the literature study and the researcher's own experience. The framework embodies four building blocks into a single and all–encompassing framework, which provides the necessary governing factors that quantify the potential need to pursue electricity generation/cogeneration, the technical and economical implications and, inevitably, the implementation requirements and guidelines. Validating the framework against case studies pertaining to ArcelorMittal Newcastle realised a correlation of between 84.6% to 97.6% concerning the technical parameters. In addition, the validation process also indicated that the framework is aligned with current practices applied by ArcelorMittal South Africa. The framework will enable South African integrated iron and steel industries to expand and adapt their own procedures to be specific to their operational requirements. The implementation of the framework should be tailored to address the specific needs concerning cogeneration in industry. / Thesis (M.Ing. (Development and Management Engineering))--North-West University, Potchefstroom Campus, 2012.
|
62 |
A framework for electricity generation opportunities in the South African integrated iron and steel industry : the ArcelorMittal Newcastle case / Marais, B.Marais, Brendan January 2011 (has links)
Electricity availability and the costs thereof in South Africa were traditionally considered an abundant and low cost commodity, but in recent years this situation has changed altogether. Industries are challenged by a strained national electricity grid and tariff increases more than four times the national inflation rate over the past two years, with further tariff increases expected in subsequent years; thus, exposing industries to significant business risks that may jeopardise the sustainability of industries. With the majority of the national electricity supply derived from coal, South Africa's push to reduce carbon emissions exerts even more pressure on industries as electricity usage is inextricably linked to its carbon footprint. In addition, South Africa's reliance on cogeneration from industries for its 2010 - 2030 electricity capacity plan further promotes industries to become more self–sufficient concerning electricity generation. In view of the above, there is a need in the South African integrated iron and steel industry for a framework that collectively addresses the governing factors pertaining to electricity generation in this industry, technical and economical quantification of available technologies and implementation of these technologies. This dissertation researches the current driving/governing and the remediating factors to become more self–sufficient in terms of electricity generation. A framework for electricity generation opportunities in the integrated iron and steel industry is developed from the literature study and the researcher's own experience. The framework embodies four building blocks into a single and all–encompassing framework, which provides the necessary governing factors that quantify the potential need to pursue electricity generation/cogeneration, the technical and economical implications and, inevitably, the implementation requirements and guidelines. Validating the framework against case studies pertaining to ArcelorMittal Newcastle realised a correlation of between 84.6% to 97.6% concerning the technical parameters. In addition, the validation process also indicated that the framework is aligned with current practices applied by ArcelorMittal South Africa. The framework will enable South African integrated iron and steel industries to expand and adapt their own procedures to be specific to their operational requirements. The implementation of the framework should be tailored to address the specific needs concerning cogeneration in industry. / Thesis (M.Ing. (Development and Management Engineering))--North-West University, Potchefstroom Campus, 2012.
|
63 |
Microeconomic reform of wholesale power markets: a dynamic partial equilibrium analysis of the impact of restructuring and deregulation in QueenslandSimshauser, Paul Edward Unknown Date (has links)
This dissertation assesses the evolving structure and performance of the electricity supply industry (ESI) in Queensland following the restructuring and deregulation process undertaken in 1997 and 1998 respectively. This microeconomic reform process essentially replaced a vertically integrated electricity monopoly with an oligopolistic electricity market. In theory at least, restructuring a monopoly generator, and deregulating the product and capacity markets, should lead to lower electricity production costs, more cost-reflective wholesale electricity prices, and a generation plant expansion path that reflects the least-cost, optimal mix of baseload, intermediate and peaking technologies. In economic terms, the deregulated electricity market should deliver improvements in productive, allocative and dynamic efficiency. However, a likely side effect is a deterioration of ESI environmental performance, since the minimization of production costs are of paramount importance in a competitive market. This research has utilized historic data, direct comparisons to southern market outcomes, economic theory and the development and adaptation of a suite of economic cost and generation system simulation models to test the stated hypotheses of expected improvements in productive, allocative and dynamic efficiency, and a deterioration in environmental performance. This research has not had the availability of extensive historical market data upon which to draw. When research first commenced, less than six months of historical market data were available. At the time of completion of this dissertation, only three full financial years of data existed. Consequently, this research necessarily relied upon complex simulation models of economic cost and electricity generation systems, coupled with economic theory, to forecast market outcomes. The short history of market data is examined and tentative conclusions are drawn from this, which are integrated with the outputs of the simulation models. Simulation experiments have been conducted to identify the theoretically optimal market outcome, that is, the least-cost generation plant mix that would best meet the Queensland load curve, subject to a reliability constraint. This forms the 'base case', and represents that which would reasonably be expected to emerge under a centrally planned monopoly regime with a welfare maximization objective, characterised by perfect information and zero political intervention. Such a scenario establishes efficient generation system costs, prices and plant capacity mix. The 'base case' or centrally planned scenario is contrasted with forecast 'market scenarios'. Performance of the generation system is explored under specified scenarios using the economic cost and generation system simulation models, publicly available information about committed and expected future investment in plant capacity, incumbent generator trends and behavioural assumptions consistent with oligopolistic market theories. The analysis indicates that productive efficiency, or cost efficiency, is enhanced as a result of restructuring the monopoly generator into competing entities since competitive pressures force the generators to reduce costs in order to survive. Allocative efficiency, or price efficiency, declined during the first three years of the market, with all generators earning positive economic rents. The presence of these economic rents, coupled with conventional oligopolistic strategies associated with the theory of barriers to entry, resulted in a rush to commission new baseload capacity. Not surprisingly, dynamic efficiency appears to be deteriorating, with the market-induced capacity augmentation proving to be far greater than that considered optimal. Modelling results indicate that the oversupply of baseload capacity is expected to place considerable downward pressure on electricity prices, and thus allocative efficiency is forecast to improve in the intermediate run, much to the benefit of electricity consumers. In the long run, the oversupply of baseload capacity and subsequent low market price can be expected to frustrate the timely entry of new peaking or intermediate plant capacity, which will ultimately be required by the Queensland ESI given the strong electricity demand growth. What does appear to be emerging is a five or seven year electricity generation business cycle. Modelling results from this research also point to alarming environmental implications, with the general levels of greenhouse gas emissions of the electricity system increasing. While system thermal efficiency is declining, the rush of new, low-cost coal-fired capacity represents an inferior outcome to the alternative (i.e. efficient combined cycle gas plant) because the volume of greenhouse emissions is markedly higher. The outlook for Queensland's greenhouse gas emissions from electricity generation, in the absence of coincident environmental policies, is that they will more than double between the 1990 emission baseline, and the commencement of the Kyoto commitment period in 2008. Some clear warnings emerge from this research. The structure and performance of an ESI prior to deregulation is important if microeconomic reforms are to be successful. Too little generation capacity or transmission capacity is unlikely to provide a robust foundation for wholesale market implementation. To ensure that adequate competition will prevail, it will be necessary to restructure monopoly generators. The existing ESI needs to be characterised by inefficiency if gains from trade are to be capitalized. An efficient centrally planned ESI is unlikely to benefit greatly from deregulation, particularly given that implementing a product market is likely to be a costly process. And finally, competitive markets deliver lowest cost, which is usually inconsistent with the most environmentally responsible outcome. As a result, if the environment is considered a policy imperative, it will be critical that ESI deregulation be complemented by coincident environmental regulations.
|
64 |
Essays on deregulation in the electricity generation sectorAjayi, Victor A. January 2017 (has links)
Over that past three decades, power sector reform has been a key pillar of policy agendas in more than half of the countries across the world. This thesis specifically concerns the empirical investigation of the economic performance of the international electricity generation industry. Drawing on the stochastic frontier analysis techniques, the thesis considers the influence of reform as exogenous factors in shifting frontier technology as well as shaping inefficiency function directly -determinants and heteroscedasticity variables. The first essay uses an extensive panel dataset of 91 countries over the period 1980 to 2010 to measure the impact of deregulation on efficiency and total productivity growth using stochastic input distance frontier (SIDF). Three specific issues are addressed in the first essay: (1) the relationship between deregulation and technical efficiency, (2) the extent of the rank correlation of the country intercepts with deregulation via their position on the frontier, (3) the trend of total factor productivity and its components. We establish a positive impact of deregulation on efficiency and some compelling evidence suggesting that the country intercepts equally account for the influence of deregulation aside efficiency. In particular, the technical efficiency index from the first paper reveals that most OECD European countries are consistently efficient. Building on this finding, the second essay investigates the performance in term of cost efficiency for electricity generation in OECD power sector while accounting for the impact of electricity market product regulatory indicators. Empirical models are developed for the cost function as a translog form and analysed using panel data of 25 countries during the period 1980 to 2009. We show that it is necessary to model latent country-specific heterogeneity in addition to time-varying inefficiency. The estimated economies of scale are adjusted to take account of the importance of the quasi-fixed capital input in determining cost behaviour, and adjusted economies of scale are verified for the OECD generation sector. The findings suggest there is a significant impact of electricity market regulatory indicators on cost. Cost complementarity between generation and emissions found to be significant, indicating the possibility of reducing emissions without necessarily reducing electricity generation. Finally, the third essay examines the performance of electric power industry s using consistent state-level electricity generation dataset for the US contiguous states from 1998-2014. We estimate stochastic production frontier for five competing models in order to identify the determinants of technical inefficiency and marginal effects. We find evidence of positive impacts of deregulation on technical efficiency across the models estimated. Our preferred model shows that deregulated states are more efficient in electricity generation than non-deregulated states. The result of the marginal effects shows that deregulation has a positive and monotonic effect on the technical efficiency.
|
65 |
The Pending Agenda of the Electricity Sector / La Agenda Pendiente del Sector EléctricoDammert Lira, Alfredo 10 April 2018 (has links)
This article discusses the structure of the electricity supply. This system mainly consists of three subsystems: the generation, transmission and distribution of electricity. Each system is comprised of different features like its regulation. Given the above, the author tells us the Peruvian case, on the body called the Committee of Economic Operation of the System (COES). / El presente artículo trata sobre la estructura de la provisión de electricidad. Este sistema consta principalmente de tres subsistemas: la generación, la transmisión, y la distribución de electricidad. Cada sistema está conformado por diferentes características al igual que su regulación. Ante lo mencionado, el autor nos comenta el caso peruano, sobre el organismo llamado Comité de Operación Económica del Sistema (COES).
|
66 |
Energia solar fotovoltaica como fonte alternativa de geração de energia elétrica em edificações residenciais / Photovoltaic solar energy as a power generation alternative in residential buildingsRegina Célia Torres 18 October 2012 (has links)
A matriz energética mundial é composta por várias fontes primárias, dentre as quais os combustíveis fósseis, como o petróleo, prevalecem sobre as demais. No entanto, devido ao crescimento populacional e ao desenvolvimento tecnológico e industrial, haverá um conseqüente aumento na demanda de energia e devido à preocupação ambiental, será necessária a busca por outras fontes energéticas. Dentre essas, destaca-se a energia solar fotovoltaica, por possibilitar a geração de forma limpa e descentralizada. O Brasil tem a vantagem de estar localizado na zona inter-tropical, registrando altos índices de irradiação solar durante todo o ano, em comparação com outros países do mundo que já fazem uso desta tecnologia. Neste trabalho, foi estudada a inserção de sistemas fotovoltaicos conectados à rede elétrica pública e integrados em edificações residenciais urbanas. Para tanto, foram dimensionados sistemas para três residências situadas em diferentes regiões brasileiras, e que possuem as mesmas características construtivas e o mesmo consumo médio mensal de energia elétrica. Uma das premissas consideradas foi a autossuficiência energética das edificações apenas utilizando o recurso solar como fonte de geração. As cidades escolhidas para a análise foram Porto União/SC, São Carlos/SP e Petrolina/PE por possuírem diferenças significativas nos níveis de irradiação solar, representando desta forma os extremos encontrados no território brasileiro. A partir do dimensionamento foram estimadas a geração de energia elétrica anual para cada localidade e as curvas de geração foram confrontadas com as curvas de demanda diária média das regiões Sul, Sudeste e Nordeste, representando respectivamente, as três cidades escolhidas. Foram estimados os custos de instalação dos três sistemas, sendo feita ainda uma análise econômica simplificada para a verificação do impacto gerado pela inserção da tecnologia solar fotovoltaica como fonte alternativa na geração de energia elétrica em edificações residenciais urbanas. Para a avaliação econômica foi considerada a adoção do Sistema de Compensação Energética e um Período de Retorno Simples, que é a relação obtida entre o investimento feito inicialmente para a instalação de um sistema fotovoltaico e a economia anual proporcionada por essa instalação. Considerando um período de vida útil de um sistema fotovoltaico como sendo estimado em 25 anos, os resultados demonstraram que todos os sistemas seriam pagos antes desse período. A partir dos dimensionamentos, foi possível concluir ainda que a área requerida para a instalação de sistemas fotovoltaicos em residências é muito pequena e possui elevado potencial de aproveitamento, viabilizando desse modo a sua inserção no ambiente urbano. / The world\'s energy matrix is made up of several primary sources among which fossil fuels, mainly oil, prevail. Nevertheless, given population growth coupled with technological and industrial development, there will consequently be an increase in energy demands and, due to environmental concerns, looking for other energy sources is necessary. Among those, photovoltaic solar energy stands out for providing clean, decentralized energy generation. Brazil has the advantage of being located within the intertropical zone, registering higher levels of solar irradiation throughout the year compared to other countries that already use such technology. In this thesis, we studied the insertion of photovoltaic systems into the public grid and integrated to urban residential buildings. For such, we sized systems for three home environments situated in different Brazilian regions with similar building characteristics and same average monthly consumption. One of the premises considered was the buildings energy self-sufficiency based on solar resources alone. The cities chosen for the experiment were Porto União/SC, São Carlos/SP and Petrolina/PE given their significantly different exposure to solar irradiation, thus representing the extremes found in the Brazilian territory. From the initial sizing up the annual electricity demand for each location was estimated and generation curves were confronted with the daily demand curves from the South, Southeast and Northeast regions representing, respectively, the three chosen cities. Implementation costs were estimated for the three systems along with a simplified economic analysis in order to verify the impact caused by the insertion of photovoltaic solar energy as an alternative source of power generation in urban residential buildings. For the economic evaluation was considered the use of the Compensation System Energy and a Simple Payback Period, which is the ratio between the initial investment for the installation of a photovoltaic system and the annual savings provided by this facility. Considering a life cycle of a photovoltaic system as estimated at 25 years, the results showed that all systems would be paid before that period. From the sizing was still possible to conclude that the area required for the installation of photovoltaic systems in residences is very small and has a high potential for use, thereby enabling their integration into the urban environment
|
67 |
Modelling And Experimental Investigation into Soluble Lead Redox Flow Battery : New MechanismsNandanwa, Mahendra N January 2015 (has links) (PDF)
Continued emission of green house gases has energized research activity worldwide to develop efficient ways to harness renewal energy. The availability of large scale energy storage technologies is essential to make renewal energy a reliable source of energy. Redox flow batteries show potential in this direction. These batteries typically need expensive membranes which need replacement be-cause of fouling. The recently proposed soluble lead redox flow battery (SLRFB), in which lead ions deposit on electrodes in charge cycle and dissolve back in discharge cycle, can potentially cut down the cost of energy storage by eliminating membrane. A number of challenges need to be overcome though. Low cycleability, residue formation, and low efficiencies are foremost among these, all of which require an understanding of the underlying mechanisms.
A model of laminar flow-through SLRFB is first developed to understand buildup of residue on electrodes with continued cycling. The model accounts for spatially and temporally growing concentration boundary layers on electrodes in a self consistent manner by permitting local deposition/dissolution rates to be controlled by local ion transport and reaction conditions. The model suggests controlling role for charge transfer reaction on electrodes (anode in particular) and movement of ions in the bulk and concentration boundary layers. The non-uniform current density on electrodes emerges as key to formation of bare patches, steep decrease in voltage marking the end of discharge cycle, and residue buildup with continuing cycles. The model captures the experimental observations very well, and points to improved operational efficiency and decreased residue build up with cylindrical electrodes and alternating flow direction of recirculation.
The underlying mechanism for more than an order of magnitude increase in cycle life of a beaker cell battery with increase in stirrer speed is unraveled next. Our experiments show that charging with and without stirring occurs identically, which brings up the hitherto unknown but quite strong role of natural convection in SLRFB. The role of stirring is determined to be dislodgement/disintegration of residue building up on electrodes. The depletion of active material from electrolyte due to residue formation is offset by “internal regeneration mechanism”, unraveled in the present work. When the rate of residue formation, rate of dislodging/disintegration from electrode, and rate of regeneration of active material in bulk of the electrolyte becomes equal, perpetual operation of SLRFB is expected.
The identification of strong role of free convection in battery is put to use to demonstrate a battery that requires stirring/mixing only intermittently, during open circuit stages between charge and discharge cycles when no current is drawn.
Inspired by our experimental finding that the measured currents for apparently diffusion limited situations (no external flow) are far larger than the maxi-mum possible theoretical value, the earlier model is modified to account for natural convection driven by concentration gradient of lead ions in electrolyte. The model reveals the presence of strong natural convection in battery. The induced flow in the vicinity of the electrodes enhances mass transport rates substantially, to the extent that even in the absence of external flow, normal charge/discharge of battery is predicted. The model predicted electrochemical characteristics are verified quantitatively through voltage-time measurements. The formation of flow circulation loops driven by electrode processes is validated qualitatively through PIV measurements.
Natural convection is predicted to play a significant role in the presence of external flow as well. The hitherto unexplained finding in the literature on insensitivity of charge-discharge characteristics to electrolyte flow rate is captured by the model when mixed mode of convection is invoked. Flow reversal and wavy flow are predicted when natural convection and forced convection act in opposite directions in the battery.
The effect of the presence of non-conducting material (PbO on anode) on the performance of SLRFB is studied using a simplified approach in the model. The study reveals the presence of charge coup de fouet phenomenon in charge cycle. The phenomenon as well as the predicted effect of depth of discharge on the magnitude of charge coup de fouet are confirmed experimentally.
|
68 |
Simulering av off-grid-lösning till flytande småhus : En undersökning av möjlig självförsörjningQvicker, Erik January 2020 (has links)
Det här arbetet gjordes i samarbete med organisationen Stockholm Tiny House Expo. Syftet med arbetet var att försöka ta fram en fungerande off-grid-lösning för uppvärmning och elproduktion, för en specifik typ av småhus med två våningar. Femton småhus kommer placeras på en flytande plattform i vattnet utanför Kastellholmen i Stockholm till en utställning år 2022. Simuleringarna utfördes på ett sådant hus under premissen att en eventuell lösning skulle vara applicerbar på samtliga småhus. Det var på förhand inte givet att en fullständig lösning skulle påträffas, eller vilken metod som skulle vara mest lyckad. Off-grid-lösningen undersöktes genom simuleringar i programvaran IDA Indoor Climate and Energy. Arbetet innefattade dimensionering av husets klimatskal, värmesystem samt system för elproduktion och energilagring. Först konstruerades en enkel modell av huset. Två olika värmesystem undersöktes. Den ena modellen använde en pelletspanna för värmeproduktion och den andra modellen använde en värmepump med sjövärme som värmekälla. I båda modellerna arbetade värmeproducenterna mot en ackumulatortank, vars vatten värmdes och sedan försåg husets tre radiatorer med varmvatten. Båda modellerna använde ett kompletterande FTX-system för uppvärmning. Målet med uppvärmningen var att på årlig basis förse huset med värme motsvarande dess effektbehov, för att hålla en jämn inomhustemperatur. Båda modellerna lyckades upprätthålla en medelinnetemperatur nära förvald temperatur på 21℃ _under höst och vinter. Ingen hänsyn togs till kylning av huset vilket resulterade i att innetemperaturen steg under sommaren. För elproduktion dimensionerades en solcellsanläggning som kompletterades med energilagringskapacitet från ett solcellsbatteri. Målet var att förse huset med en elenergi motsvarande en normal årsförbrukning för hus av den storleken samt elenergi för att driva ventilationssystemets fläktar. I värmepumpmodellen behövde även värmepumpen förses med elenergi vid drift. När hänsyn togs till energibalansen under ett år kunde ingen av modellerna förses med elenergi under hela vinterhalvåret. Detta berodde på att elförbrukningen var större än vad solcellsanläggningen tillsammans med batterilager tillförde systemet under samma period. Pelletsmodellen klarade av att vara off-grid under cirka åtta månader av året, med undantag för årets två första och sista månader. Värmepumpmodellen klarade endast av att vara off-grid under vår och sommar.
|
69 |
Wind turbines application for energy savings in Gas transportation systemMingaleeva, Renata January 2014 (has links)
The Thesis shows the perspectives of involving renewable energy resources into the energy balance of Russia, namely the use of wind energy for the purpose of energy supply for the objects of the Russian Gas transportation system. The methodology of the wind energy technical potential calculation is designed and the wind energy technical potential assessment for onshore and offshore zones of Russia is presented. The analysis of Russian Gas transportation system in terms of energy consumption is carried out when comparing the map of wind resources in Russia with the map of Russian Gas transportation system and the perspective of wind turbines installation is shown in order to offset energy consumption of the selected object of the Gas transportation system. The decision-making algorithm for wind turbines selection is developed for installation on the wind farm. Also indicators of investment attractiveness of the project of using wind turbines for compression stations energy supply were calculated.
|
70 |
Development and Optimization of Flexoelectric and Electrochemical Performance of Multifunctional Polymer Electrolyte Membranes for Energy Harvesting and StorageAlmazrou, Yaser M. 02 August 2023 (has links)
No description available.
|
Page generated in 0.1303 seconds