• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 16
  • 9
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Complex Electric-Field Induced Phenomena in Ferroelectric/Antiferroelectric Nanowires

Herchig, Ryan Christopher 07 April 2017 (has links)
Perovskite ferroelectrics and antiferroelectrics have attracted a lot of attention owing to their potential for device applications including THz sensors, solid state cooling, ultra high density computer memory, and electromechanical actuators to name a few. The discovery of ferroelectricity at the nanoscale provides not only new and exciting possibilities for device miniaturization, but also a way to study the fundamental physics of nanoscale phenomena in these materials. Ferroelectric nanowires show a rich variety of physical characteristics which are advantageous to the design of nanoscale ferroelectric devices such as exotic dipole patterns, a strong dependence of the polarization and phonon frequencies on the electrical and mechanical boundary conditions, as well as a dependence of the transition temperatures on the diameter of the nanowire. Antiferroelectricity also exists at the nanoscale and, due to the proximity in energy of the ferroelectric and antiferroelectric phases, a phase transition from the ferroelectric to the antiferroelectric phase can be facilitated through the application of the appropriate mechanical and electrical boundary conditions. While much progress has been made over the past several decades to understand the nature of ferroelectricity/antiferroelectricity in nanowires, many questions remain unanswered. In particular, little is known about how the truncated dimensions affect the soft mode frequency dynamics or how various electrical and mechanical boundary conditions might change the nature of the phase transitions in these ferroelectric nanowires. Could nanowires offer a distinct advantage for solid state cooling applications? Few studies have been done to elucidate the fundamental physics of antiferroelectric nanowires. How the polarization in ferroelectric nanowires responds to a THz electric field remains relatively underexplored as well. In this work, the aim is to to develop and use computational tools that allow first-principles-based modeling of electric-field-induced phenomena in ferroelectric/antiferroelectric nanowires in order to address the aforementioned questions. The effective Hamiltonian approach is a well validated model which reliably reproduces many static and dynamic properties of perovskite ferroelectric and antiferroelectrics. We begin by developing an effective Hamiltonian for the prototypical ferroelectric potassium niobate, a lead-free material which undergoes multiple structural phase transitions. Density functional theory calculations within the LDA and GGA are used to determine the effective Hamiltonian parameters for KNbO3 . By simulating an annealing within an NPT ensemble, we find that the KNbO3 parameters found from first principles underestimate the experimental transition temperatures. We apply a universal scaling technique to all of the first-principles derived parameters and are thus able to more accurately reproduce the transition temperatures predicted by experiment as well as a number of other static and dynamic properties of potassium niobate. Having determined the parameters of the effective Hamiltonian for KNbO3 , we use this as well as previously determined effective Hamiltonian parameters for PbTiO3 and BaTiO3 to study the electrocaloric effect in nanowires made of these materials. We determined that, in general, the electrocaloric effect in ferroelectric nanowires is diminished due to the reduced correlation length resulting from the finite lateral dimensions. However, certain temperature ranges were identified near ambient temperature where the electrocaloric response is enhanced with respect to bulk. The effective Hamiltonian model was also employed to study the response of the spontaneous polarization and temperature to tailored electric fields. We identified a novel means of reversing the polarization in ferroelectric nanowires which could potentially be used in the design of nanoscale THz sensors of ultra high density ferroelectric memory devices. While the soft mode frequency dynamics of bulk ferroelectrics under various mechanical boundary conditions have been studied extensively, the effects of different mechanical boundary conditions on the soft mode dynamics in ferroelectric nanowires remains relatively under-explored. We conduct a comprehensive study on PbTiO3 nanowires which explores the effects of hydrostatic pressure, applied uniaxial stress, and biaxial strain on the structural properties, transition temperatures, and soft mode dynamics. We found that depending on the particular type of mechanical boundary condition, the nanowire can exhibit either monodomain or polydomain vortex phases, drastically different from what is found for PbTiO3 bulk and originates from the critical role of the depolarizing field. We found a rich variety of dipole patterns, particularly for the polydomain states with the dipoles arranged in single and double polarization vortices depending on the type and strength of the mechanical boundary conditions. The soft mode frequency dynamics are also strongly affected by the mechanical boundary conditions. In particular we find that the frequency of the E mode in the P4mm phase is significantly larger than the A 1 mode which is in contrast with bulk PbTiO3 . This striking finding is attributed to the presence of the depolarizing field along the truncated directions which leads to mode hardening. In the last chapter, we identify the emergence of a ferroelectric state in antiferroelectric PbZrO3 nanowires and describe possible ways to stabilize the ferroelectric phase. Finally, we explore how our findings could potentially be used to improve existing technologies such as energy storage devices and electromechanical actuators as well as future technologies like solid state cooling devices.
2

Thermo-electro-mechanical behavior of ferroelectric nanodots

Petrou, Zacharias 29 October 2013 (has links)
The relatively recent discovery of the giant electrocaloric effect in ferroelectric ceramics may lead to new solid state cooling technologies that are energy efficient, reliable, portable, and environmentally friendly. This phenomenon, along with many other novel field-coupled properties of ferroelectrics, such as piezoelectricity, pyroelectricity, the electro-optic effect, phase changes, and polarization switching, make these materials useful for a wide range of technological applications including sensors, ultrasound, infrared cameras, sonar, diesel engine fuel injectors, ferroelectric random access memory, electro-optic modulators, vibration control, and electrocaloric cooling devices. Most of world’s current cooling and refrigeration technology is based upon the vapor-compression cycle of a refrigerant. Refrigeration systems that are based on this technology are bulky, require moving parts in the compressor and some of them have a less than optimal environmental impact. Thin film devices that utilize the electrocaloric effect could have a significant impact on refrigeration, heat pumps, air conditioning, energy scavenging, and computer cooling systems. Especially for the latter ones, the fan-based solutions are not likely to be able to keep up with the increases in computing power and the resulting current densities in integrated circuits. The ability to make quantitative predictions of the behavior of ferroelectric structures is of significant importance given the experimental efforts on the synthesis of barium titanate nanodots, nanorods, nanowires, and nanotubes, and lead zirconate titanate (PZT) thin films, and nanoparticles, and the potential for technological applications of these structures. The research contained herein implements a full thermo-electro-mechanical continuum framework and numerical methods based on phase-field modeling to study the domain and phase structure evolution associated with the electrocaloric effect in barium titanate ferroelectric nanodots. / text
3

Design, Analysis, Modeling and Testing of a Micro-scale Refrigeration System

Guo, Dongzhi 01 September 2014 (has links)
Chip scale refrigeration system is critical for the development of electronics with the rapid increase of power consumption and substantial reduction of device size, resulting in an emergent demand on novel cooling technologies with a high efficiency for the thermal management. In this thesis, active refrigeration devices based on Stirling cycle and an electrocaloric material, are designed and investigated to achieve a high cooling performance. Firstly, a new Stirling micro-refrigeration system composed of arrays of silicon MEMS cooling elements is designed and evaluated. The cooling elements are fabricated in a stacked array on a silicon wafer. A regenerator is placed between the compression (hot side) and expansion (cold side) diaphragms, which are driven electrostatically. Under operating conditions, the hot and cold diaphragms oscillate sinusoidally and out of phase such that heat is extracted to the expansion space and released from the compression space. A first-order of thermodynamic analysis is performed to study the effect of geometric parameters. Losses due to regenerator non-idealities and chamber heat transfer limitation are estimated. A multiphysics computational approach for analyzing the system performance that considers compressible flow and heat transfer with a large deformable mesh is demonstrated. The optimal regenerator porosity for the best system COP (coefficient of performance) is identified. To overcome the computational complexity brought about by the fine pillar structure in the regenerator, a porous medium model is used to allow for modeling of a full element. The analysis indicates the work recovery of the system and the diaphragm actuation are main challenges for this cooler design.The pressure drop and friction factor of gas flow across circular silicon micro pillar arrays fabricated by deep reactive ion etch (DRIE) process are investigated. A new correlation that considers the coupled effect of pillar spacing and aspect ratio, is proposed to predict the friction factor in a Reynolds v number range of 1-100. Silicon pillars with large artificial roughness amplitudes is also fabricated, and the effect of the roughness is studied in the laminar flow region. The significant reduction of pressure drop and friction factor indicates that a large artificial roughness could be built for pillar arrays in the regenerator to enhance the micro-cooler efficiency. The second option is to develop a fluid-based refrigeration system using an electrocaloric material poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) [P(VDF-TrFE-CFE)] terpolymer. Each cooling element includes two diaphragm actuators fabricated in the plane of a silicon wafer, which drive a heat transfer fluid back and forth across terpolymer layers that are placed between them. Finite element simulations with an assumption of sinusoidal diaphrahm motions are conducted to explore the system performance detailedly, including the effects of the applied electric field, geometric dimensions, operating frequency and externally-applied temperature span. Multiphysics modeling coupled with solid-fluid interaction, heat transfer, electrostatics, porous medium and moving mesh technique is successfully performed to verify the thermal modeling feasibility. The electrocaloric effect in thin films of P(VDF-TrFE-CFE) terpolymer is directly measured by infrared imaging at ambient conditions. At an electric field of 90 V/μm, an adiabatic temperature change of 5.2 °C is obtained and the material performance is stable over a long testing period. These results suggest that application of this terpolymer is promising for micro-scale refrigeration.
4

Epitaxial lead-free oxide layers for electrocaloric studies

Martins Magalhaes, Bruno 28 February 2023 (has links)
Solid-state cooling based on the electrocaloric effect might be a promising alternative to vapor-compressed refrigeration, not only for its increased efficiency but also for its role in preventing the emission of hazardous gases. The electrocaloric effect (ECE) refers to the reversible adiabatic temperature change that occurs in polar materials when an external electric field is applied or varied. In ferroelectric materials, the ECE is particularly pronounced at the transition temperature between the ferroelectric and paraelectric phases. It was shown recently that ferroelectric thin films in general exhibit excellent electrocaloric properties due to their capacity to withstand high electric fields, which typically results in an increase in the adiabatic temperature change. Therefore, the major aim of this thesis was to study environmentally friendly lead-free compounds for their feasibility as electrocaloric active layers in epitaxial film architectures prepared by pulsed laser deposition. Reports in literature on bulk materials suggest that Na0.5Bi0.5TiO3 (NBTO) compounds may be suitable for electrocaloric cooling. Therefore, the growth of epitaxial NBTO-based thin films was studied, which helps to study the correlation between composition, microstructure, and functional properties of this material. Epitaxial films were deposited on different single crystalline substrates applying a thin epitaxial La0.5Sr0.5CoO3 layer as the bottom electrode for subsequent electric measurements. Structural investigation by X-ray diffraction revealed an undisturbed epitaxial growth on LaAlO3, whereas a significantly smaller temperature window for epitaxy was found on YAlO3. The differences might be explained by the lattice misfit resulting in a higher defect density of the intermediate buffer layer on YAlO3. For all samples, a columnar structure with additional pores was found leading to substantial surface roughness. Dielectric measurements revealed significantly decreased permittivity values and increased losses at elevated temperatures if compared to bulk samples. While polarization loops at -100 °C indicated a distinct ferroelectric behavior, ambient temperature data revealed significant resistive contributions due to high leakage currents. As a result, it was not possible to determine the electrocaloric properties for all NBTO-based thin films deposited with the indirect method. In the second part of the thesis, the correlation between structural properties and the electrocaloric effect was investigated in lead-free epitaxial Ba1-xSrxTiO3 (BSTO) thin films. Here, BSTO thin films with Sr contents ranging from x = 0 to x = 0.3 were deposited on SrRuO3 buffered SrTiO3 single crystalline substrates. X-ray diffraction analysis verified a pure epitaxial growth for all Sr concentrations and film thicknesses indicating a larger tetragonal distortion if compared to the bulk material. Dense layers with a low surface roughness were found in microstructural studies. Temperature and frequency-dependent dielectric measurements indicate a diffuse phase transition for all samples, where thicker films showed larger permittivity values. The temperature of maximum permittivity decreases as Sr concentration increases. Polarization curves demonstrate a relaxor-like behavior, particularly above room-temperature. The adiabatic temperature change due to the ECE was determined with the indirect method showing |ΔT| values of up to 2.9 K for an electric field change of 750 kV cm-1.
5

Caractérisation de l'effet électrocalorique dans des matériaux solides et cristaux liquides ferroélectriques / Charaterization of the electrocaloric effect in solid and liqui crystal ferroelectric materials

Bsaibess, Eliane 14 December 2018 (has links)
Ce mémoire de thèse porte sur la caractérisation de l'effet électrocalorique des matériaux ferroélectriques solides et cristaux liquides. La découverte récente d'un effet électrocalorique qualifié de "géant" a relancé l'intérêt pour l'étude et la caractérisation des propriétés électrocaloriques des matériaux. Au-delà de la recherche des matériaux performants, ce domaine de recherche concerne également le développement des techniques de caractérisations appropriées et la réalisation des prototypes de réfrigération électrocalorique. Dans ce contexte, notre étude se focalise sur le développement de nouvelles techniques de caractérisation, la méthode photopyroélectrique (indirecte) et la calorimétrie (directe). La technique photopyroélectrique, développée au sein du laboratoire a été utilisée pour la détermination des propriétés thermiques du matériau pyroélectrique lui-même. L'exploitation de cette technique nous a permis également de déterminer les propriétés pyroélectriques du matériau, en particulier le rapport entre le coefficient pyroélectrique et la capacité calorifique, en fonction de la température et du champ électrique appliqué, nécessaire pour une évaluation indirecte de l'effet électrocalorique. Plusieurs matériaux ferroélectriques solides et liquides ont été étudiés à l'aide de cette méthode, en particulier, un monocristal de TriGlycine Sulfate et deux cristaux liquides. L'effet électrocalorique a été évalué autour de la température de transition de phase que présentent chacun de ces matériaux. Pour valider les résultats obtenus, nous avons procédé à des mesures indirectes de la polarisation par la méthode usuelle du courant de dépolarisation. Dans ce travail, nous avons également développé une technique de mesure indirecte de l'effet électrocalorique, par mesure calorimétrique, à l'aide d'un nouveau dispositif. Outre l'étude des transitions de phase et de la capacité calorifique, cet instrument permet une mesure directe de la température et de la quantité de chaleur absorbée ou cédée avec le milieu environnant. Une première étude de l'effet électrocalorique a été réalisée sur un matériau multicouche à base de titanate de baryum. Les résultats obtenus par cette approche ont été ensuite comparés à d'autres techniques directes et indirectes existantes dans la littérature. Ces deux nouvelles approches permettent d'élargir les possibilités d'étude de futurs matériaux électrocaloriques et de mesurer à la fois les propriétés thermiques et pyroélectriques nécessaires pour l'étude de l'effet électrocalorique. / This thesis work deals with the characterization of the electrocaloric effect in solid and liquid crystal ferroelectric materials. Following the 2006 discovery of Mischenko and al., the characterization techniques of the electrocaloric effect and the exploration of new caloric materials have attracted much attention. This discovery showed also that electrocaloric materials can be used for efficient innovative solution for refrigeration devices. This PhD dissertation focuses on the development of new techniques used to evaluate the electrocaloric effect by the photopyroelectric technique and by calorimetry. Few years ago, a new particular configuration based on the photopyroelectric technique, developed in our laboratory, was described for measuring thermal parameters of pyroelectric materials themselves. By means of this technique, we indirectly investigate the electrocaloric effect in ferroelectric materials by measuring the ratio of the pyroelectric coefficient to the volumetric heat capacity, as function of temperature and applied field, using Maxwell's relation. Measurements were carried out on ferroelectric solid materials (TriGlycine Sulfate) and liquid crystals. Electrocaloric effect has been evaluated around the phase transition temperature of each sample. To further validate the accuracy to the evaluated adiabatic temperature changes, we proceeded to indirect measurements by using the polarization reversal current technique. In the present work, we also developed a calorimeter in order to directly evaluate the electrocaloric effect. This technique is mainly used to measure with high resolution the heat capacity and enthalpy near phase transition temperature. In addition, this technique allows us to directly measure the temperature and the amount of heat absorbed or transferred from the material to the surrounding environment. A primary study of the electrocaloric effect was carried out on a multilayer material based on barium titanate. The results obtained by this approach have been then compared to conventional direct and indirect measurements. Those two new approaches give access to the measurement of both thermal and pyroelectric properties allowing the evaluation of the electrocaloric effect.
6

Zusammenhang zwischen Gefüge und ferroelektrischen Eigenschaften texturierter PMN-PT Dünnschichten

Mietschke, Michael 16 February 2018 (has links) (PDF)
Die Bedeutung von keramischen Materialien mit funktionalen Eigenschaften ist über die letzten Jahrzehnte kontinuierlich gestiegen. Ein besonderes Interesse liegt dabei in der elektronischen Speicherung von Informationen. Die Realisierung war jedoch lange Zeit problematisch, da die erforderlichen Feldstärken, die notwendig sind, um die Polarisation zu schalten, für Massivmaterialien zu hoch sind. Heutzutage ist dies dank moderner Dünnschichttechnologien kein Problem mehr, so dass nichtflüchtige ferroelektrische Datenspeicher kommerziell verfügbar sind. Aufgrund der ausgezeichneten dielektrischen und elektromechanischen Eigenschaften von ferroelektrischen Materialien werden diese auch für Anwendungen in Aktuatoren, Kondensatoren oder mikro-elektro-mechanischen Systemen verwendet. Neben den klassischen Ferroelektrika wie Pb(Zr,Ti)O3 spielen dabei vor allem Relaxor-Ferroelektrika wie Pb(Mg1/3Nb2/3O3-PbTiO3 (PMN-PT) eine entscheidende Rolle. Eine weitere sehr interessante funktionale Eigenschaft von ferroelektrischen Materialien, die besonders in den letzten zehn Jahren das Forschungsinteresse geweckt hat, ist der elektrokalorische Effekt (electro caloric effect, ECE). Besonders hohe ECE konnten in der Vergangenheit mit Blei-basierenden Materialien, wie beispielsweise PMN-PT, erzielt werden. Um den Einfluss der Struktur auf die funktionalen Eigenschaften zu untersuchen ist es vorteilhaft, mit texturierten Schichten zu arbeiten. Als Materialsystem wurde in dieser Arbeit PMN-PT verwendet, da dieses besonders gute ferroelektrische und elektrokalorischen Eigenschaften zeigt und es aufgrund der vielfältigen veröffentlichten Untersuchungen als Modellsystem genutzt werden kann. Als geeignete Herstellungsmethode von Dünnschichten komplexer Oxide hat sich die gepulste Laserabscheidung herausgestellt, die auch in dieser Arbeit genutzt wurde. Die Schwerpunkte der strukturellen Untersuchungen beschäftigen sich mit der Stabilisierung der Perowskit-Phase des PMN-PT, der detaillierten Aufklärung des Gefüges sowie der Realisierung von Schichten mit unterschiedlicher Orientierung und auf verschiedenen Substratmaterialien. Hinsichtlich der funktionalen Eigenschaften wird auf den Einfluss der Pyrochlor-Phase auf die Ferroelektrizität, die Anisotropie der ferroelektrischen und elektrokalorischen Eigenschaften sowie auf eine Möglichkeit der direkten Messung der elektrokalorischen Temperaturänderung von PMN-PT Dünnschichten eingegangen.
7

Zusammenhang von Gefüge und ferroelektrischen Eigenschaften texturierter PMN-PT Dünnschichten

Mietschke, Michael 16 February 2018 (has links)
Die Bedeutung von keramischen Materialien mit funktionalen Eigenschaften ist über die letzten Jahrzehnte kontinuierlich gestiegen. Ein besonderes Interesse liegt dabei in der elektronischen Speicherung von Informationen. Die Realisierung war jedoch lange Zeit problematisch, da die erforderlichen Feldstärken, die notwendig sind, um die Polarisation zu schalten, für Massivmaterialien zu hoch sind. Heutzutage ist dies dank moderner Dünnschichttechnologien kein Problem mehr, so dass nichtflüchtige ferroelektrische Datenspeicher kommerziell verfügbar sind. Aufgrund der ausgezeichneten dielektrischen und elektromechanischen Eigenschaften von ferroelektrischen Materialien werden diese auch für Anwendungen in Aktuatoren, Kondensatoren oder mikro-elektro-mechanischen Systemen verwendet. Neben den klassischen Ferroelektrika wie Pb(Zr,Ti)O3 spielen dabei vor allem Relaxor-Ferroelektrika wie Pb(Mg1/3Nb2/3O3-PbTiO3 (PMN-PT) eine entscheidende Rolle. Eine weitere sehr interessante funktionale Eigenschaft von ferroelektrischen Materialien, die besonders in den letzten zehn Jahren das Forschungsinteresse geweckt hat, ist der elektrokalorische Effekt (electro caloric effect, ECE). Besonders hohe ECE konnten in der Vergangenheit mit Blei-basierenden Materialien, wie beispielsweise PMN-PT, erzielt werden. Um den Einfluss der Struktur auf die funktionalen Eigenschaften zu untersuchen ist es vorteilhaft, mit texturierten Schichten zu arbeiten. Als Materialsystem wurde in dieser Arbeit PMN-PT verwendet, da dieses besonders gute ferroelektrische und elektrokalorischen Eigenschaften zeigt und es aufgrund der vielfältigen veröffentlichten Untersuchungen als Modellsystem genutzt werden kann. Als geeignete Herstellungsmethode von Dünnschichten komplexer Oxide hat sich die gepulste Laserabscheidung herausgestellt, die auch in dieser Arbeit genutzt wurde. Die Schwerpunkte der strukturellen Untersuchungen beschäftigen sich mit der Stabilisierung der Perowskit-Phase des PMN-PT, der detaillierten Aufklärung des Gefüges sowie der Realisierung von Schichten mit unterschiedlicher Orientierung und auf verschiedenen Substratmaterialien. Hinsichtlich der funktionalen Eigenschaften wird auf den Einfluss der Pyrochlor-Phase auf die Ferroelektrizität, die Anisotropie der ferroelektrischen und elektrokalorischen Eigenschaften sowie auf eine Möglichkeit der direkten Messung der elektrokalorischen Temperaturänderung von PMN-PT Dünnschichten eingegangen.
8

Epitaktische BaTiO₃-basierte Schichten für elektrokalorische Untersuchungen

Engelhardt, Stefan 30 October 2020 (has links)
Festkörper-basierte Kühlkreisläufe, die auf dem elektrokalorischen Effekt beruhen, sind in den vergangenen Jahren in den Mittelpunkt aktueller Forschungen gerückt, da für den direkten Betrieb keine klimaschädlichen Treibhausgase erforderlich sind und da sie das Potential für eine hohe Energieeffizienz aufweisen. Der elektrokalorische Effekt (EKE) beschreibt eine reversible adiabatische Temperaturänderung in polaren Materialien, die durch die Änderung eines äußeren elektrischen Feldes induziert wird. Besonders stark aus-geprägte elektrokalorische Eigenschaften treten für ferroelektrische Materialien im Bereich der Umwandlung zwischen ferro- und paraelektrischer Phase auf. Zudem verstärkt sich der EKE mit zunehmender Feldstärkeänderung. Ferroelektrische Dünnschichten, an die im All-gemeinen hohe elektrische Felder angelegt werden können, zeigen daher gute elektrokalo-rische Eigenschaften. Für das Materialsystem BaZrxTi1-xO3 (BZT) wurde in der Literatur beschrieben, dass Massivproben in Hinblick auf den EKE ein günstiges Eigenschaftsprofil aufweisen. In dieser Arbeit werden BZT–Dünnschichten hergestellt, um die vielverspre-chenden Eigenschaften dieses Materialsystems näher zu untersuchen und um ein besseres Verständnis der zugrundeliegenden physikalischen Vorgänge zu erlangen. Dazu wird ein epitaktisches Schichtwachstum angestrebt, um ein möglichst klar definiertes Gefüge zu erhalten und so den Zusammenhang zwischen mikrostrukturellen, ferroelektrischen und elektrokalorischen Eigenschaften untersuchen zu können. Durch eine Optimierung der Herstellungsbedingungen werden mit Hilfe der gepulsten Laserdeposition epitaktische BZT-Dünnschichten auf (001)-orientierten einkristallinen SrTiO3-Substraten abgeschieden. Dabei werden die hergestellten Proben mit Röntgenbeugungs-, Elektronenmikroskop und-Die durch den EKE induzierte adiabatische Temperaturänderung wird auf Basis einer thermodynamischen Analyse von feld- und temperaturabhängigen Polarisationsmessungen indirekt bestimmt. Extrinsische Einflüsse wie Leckströme oder Randschichteffekte können zu Deformationen der Polarisationhysterese führen und daher eine fehlerhafte Abschätzung des EKE verursachen. Es werden daher zwei Ansätze für eine direkte Charakterisierung des EKE in Dünnschichten beschrieben.
9

Broad Phase Transition of Fluorite-Structured Ferroelectrics for Large Electrocaloric Effect

Park, Min Hyuk, Mikolajick, Thomas, Schroeder, Uwe, Hwang, Cheol Seong 30 August 2022 (has links)
Field-induced ferroelectricity in (doped) hafnia and zirconia has attracted increasing interest in energy-related applications, including energy harvesting and solid-state cooling. It shows a larger isothermal entropy change in a much wider temperature range compared with those of other promising candidates. The field-induced phase transition occurs in an extremely wide temperature range, which contributes to the giant electrocaloric effect. This article examines the possible origins of a large isothermal entropy change, which can be related to the extremely broad phase transitions in fluorite-structured ferroelectrics. While the materials possess a high entropy change associated with the polar–nonpolar phase transition, which can contribute to the high energy performance, the higher breakdown field compared with perovskites practically determines the available temperature range.
10

Etude et développement de nouveaux matériaux et structures électroactifs pour la récupération d'énergie / Development of energy harvesting systems based on new electroactive materials and structures

Wang, Liuqing 05 November 2014 (has links)
La croissance formidable des dispositifs sans fils et autonomes (réseaux de capteurs, objets connectés…) voit actuellement son développement limité par les batteries qui présente une durée de vie limitée et ainsi soulève des problèmes de maintenance. Afin de palier à cette limitation, l’utilisation de l’énergie directement disponible dans l’environnement immédiat du dispositif, conduisant au concept de « récupération d’énergie », est une voie fortement explorée depuis une dizaine d’années. Ainsi, l’objectif de cette thèse a été de développer de nouvelles techniques et/ou d’utiliser de nouveaux principes de conversion afin de proposer des alternatives aux techniques de récupération d’énergie classiques. Dans un premier temps, l’optimisation de récupérateurs électrostatiques a été étudiée. Les performances de ces systèmes étant fortement liées à la variation de capacité, une structure fractale, permettant un accroissement important des surfaces en regard entre deux électrodes (et donc de la capacité) lorsque ces dernières sont proches, a été proposée et modélisée. Il est ainsi montrer un accroissement significatif des possibilités de récupération d’énergie ; ces dernières étant étroitement liées à l’amplitude de vibration du système. Le second axe de recherche de cette thèse s’est attelé à développer un modèle haut niveau simple mais précis pour les structure utilisant des polymères électrostrictifs fonctionnant en flexion. Une analyse énergétique a permis de mettre en place un modèle électromécanique masse-ressort-amortisseur couplé avec une source de courant contrôlée par les excitations mécaniques et électriques du système, permettant ainsi une conception plus aisée du microgénérateur. Enfin, la dernière partie de cette thèse s’est intéressée à la conversion d’énergie thermique utilisant la variation de perméabilité des matériaux ferromagnétiques, ouvrant de nouvelles possibilités de conversion de l’énergie. En particulier, une technique simple et autonome consiste à créer un champ magnétique de polarisation à l’aide d’un aimant, permettant une variation du flux magnétique lors d’un changement de température, qui peut être converti sous forme électrique à l’aide d’un bobinage. / This thesis has been devoted to electrostatic mechanical energy harvesting based on capacitors inspired by fractal geometry, to mechanical energy harvesting based on beams with electrostrictive polymers, and to thermal energy harvesting based on ferromagnetic materials. For electrostatic energy harvesting without electrets, interdigitated capacitors are usually applied as in-plane overlap varying and in-plane gap closing electrostatic generators. In consideration of the limit of aspect ratio for fingers in the capacitor, we would like to improve the capacitor configuration by taking advantage of self-similarity patterns. The concept is to gradually add fingers of smaller widths between original ones to form a mountain-shape capacitor. According to the different width ranges of capacitors, they are classified as of different orders whose performances vary with the vibration amplitude. Harvested energy over one cycle for capacitors of order 1, 2 and 3 has been demonstrated by theoretical and FEM results. In application, the order of capacitor needs to be properly chosen to maximize the harvested energy. Electrostrictive polymer (polyurethane) has been utilized along with a beam to perform mechanical energy harvesting. Two models have been analyzed: clamped-free beam with a polymer film attached at the clamped end, clamped-free bimorph beam. The simple model for electrostrictive devices under flexural solicitation is set up on the base of analysis of energy conversion and it shows that the electrostrictive system can be reduced to a simple spring-mass-damper system with a quadratic dependence with the applied voltage on the mechanical side and to a current source controlled by the applied voltage with a capacitive internal impedance on the electrical side. Experiments based on the clamped-free beam with a polymer film attached to the clamped end have been carried out to evaluate the mechanical to electrical conversion. The thermal energy generator is based on a ferromagnetic material, a magnet and a coil. As the magnetic permeability of ferromagnetic materials encounters drastic variation around the Curie temperature, the concept of the generator is to take advantage of the permeability variation caused by temperature decrease to generate sharp variation in magnetic flux which induces a current in the coil. According to theoretical results, the generated current is closely related to the temperature variation and the variation velocity. Experiments have been carried out on Ni30Fe of which the Curie temperature is 55 ºC. When the temperature decreases from 20.5 ºC to -42.4 ºC, the maximum power is about 4×10^(-7)W with the load to be 2 Ω.

Page generated in 0.0474 seconds