Spelling suggestions: "subject:"electromechanical coupling"" "subject:"electromechanical doupling""
21 |
Étude structurale et fonctionnelle du canal potassium dépendant du voltage KvAPFaure, Elise 09 1900 (has links)
Les canaux ioniques dépendants du voltage sont responsables de l'initiation et de la propagation des potentiels d'action dans les cellules excitables. De nombreuses maladies héréditaires (channelopathies) sont associées à un contrôle défectueux du voltage par ces canaux (arythmies, épilepsie, etc.). L’établissement de la relation structure-fonction exacte de ces canaux est donc crucial pour le développement de nouveaux agents thérapeutiques spécifiques. Dans ce contexte, le canal procaryote dépendant du voltage et sélectif au potassium KvAP a servi de modèle d’étude afin d’approfondir i) le processus du couplage électromécanique, ii) l’influence des lipides sur l’activité voltage-dépendante et iii) l’inactivation de type closed-state.
Afin de pallier à l’absence de données structurales dynamiques du côté cytosolique ainsi que de structure cristalline dans l’état fermé, nous avons mesuré le mouvement du linker S4-S5 durant le gating par spectroscopie de fluorescence (LRET). Pour ce faire, nous avons utilisé une technique novatrice du contrôle de l’état conformationnel du canal en utilisant les lipides (phospholipides et non phospholipides) au lieu du voltage. Un modèle dans l’état fermé a ainsi été produit et a démontré qu’un mouvement latéral modeste de 4 Å du linker S4-S5 est suffisant pour mener à la fermeture du pore de conduction.
Les interactions lipides - canaux jouent un rôle déterminant dans la régulation de la fonction des canaux ioniques mais ne sont pas encore bien caractérisées. Nous avons donc également étudié l’influence de différents lipides sur l’activation voltage - dépendante de KvAP et mis en évidence deux sites distincts d’interactions menant à des effets différents : au niveau du senseur de voltage, menant au déplacement de la courbe conductance-voltage, et du côté intracellulaire, influençant le degré de la pente de cette même courbe. Nous avons également démontré que l’échange de lipides autour de KvAP est extrêmement limité et affiche une dépendance à l’état conformationnel du canal, ne se produisant que dans l’état ouvert.
KvAP possède une inactivation lente particulière, accessible depuis l'état ouvert. Nous avons étudié les effets de la composition lipidique et de la température sur l'entrée dans l'état inactivé et le temps de récupération. Nous avons également utilisé la spectroscopie de fluorescence (quenching) en voltage imposé afin d'élucider les bases moléculaires de l’inactivation de type closed-state. Nous avons identifié une position à la base de l’hélice S4 qui semble impliquée à la fois dans le mécanisme responsable de ce type d'inactivation et dans la récupération particulièrement lente qui est typique du canal KvAP. / Voltage-gated ion channels are responsible for the initiation and propagation of action potentials in excitable cells. Several hereditary diseases (channelopathies) are associated with a defective voltage control by these channels, leading to arrhythmias, epilepsy, etc. Hence, establishing the exact structure/function relation for ion channels is crucial for the development of new specific therapeutic agents. Here, the bacterial voltage-gated potassium channel KvAP served as a model to study i) electromechanical coupling, ii) influence of lipids on the voltage dependent activity and iii) closed-state inactivation.
To overcome the lack of structural information on the cytosolic side and of crystal structure in the closed state, we determined the S4-S5 linker movement during gating using fluorescence spectroscopy (LRET). We were able to control the conformational state of the channels by using lipids (phospholipids and non phospholipids) instead of voltage clamp. Based on these experimental constraints, a model in the closed state was produced, showing that a small 4Å radial displacement of the S4-S5 linker is sufficient to close the conduction pore.
Interactions between lipids and membrane proteins play an important role in the regulation of ion channels activity but are not well characterized. We studied the influence of different lipids on KvAP voltage-dependent activation and showed two distinct effects related to different interactions sites: one bound to the voltage sensor, leading to a shift of the conductance-voltage curve, and another at the intracellular side near the pore region, affecting the steepness of this curve. We also showed that the exchange of lipids is very limited around KvAP and seems to be state dependent, occuring only when the channels are kept in the open state.
KvAP has a slow inactivation atypical, accessible from the open state. We studied the effects of lipid composition and temperature on entry into inactivation and recovery. We also used voltage-clamp fluorometry in bilayers to investigate closed-state inactivation molecular basis. We identified a position at the bottom of the S4 helix that seems involved in the mechanism for slow inactivation and the extremely slow recovery from inactivation typically displayed by KvAP.
|
22 |
Polyuréthanes électrostrictifs et nanocomposites : caractérisation et analyse des mécanismes de couplages électromécaniques / Electrostrictive polyurethanes and nanocomposites : characterization and analyse of the mechanisms of electromechanical couplingsWongtimnoi, Komkrisd 19 December 2011 (has links)
Depuis quelques années on s'intéresse aux actionneurs base polymères, souvent appelés polymères électroactifs électroniques (EAPS) pour intégrer dans des microsystèmes électromécaniques (MEMS). Trois mécanismes sont à l'origine du couplage électromécanique : (i) la piézoélectricité qui apparait dans certaines phases cristallines, (ii) la force "de Maxwell" lorsqu'un champ électrique aux bornes du condensateur constitué d'un polymère souples placé entre deux électrodes, et (iii) l'électrostriction, phénomène intrinsèque aux matériaux polaires, mal connu. Les deux derniers se traduisent par une dépendance quadratique de la déformation macroscopique avec le champ électrique appliqué. Parmi les EAPs électrostrictifs, on cite souvent certains polyuréthanes (PU) qui a conduit à ce choix pour ce travail de thèse. Une première partie a consisté à analyser en détail l'électrostriction de 3 PUs, copolymères à blocs de deux types d'unités de répétition, les unes conduisant à des segments rigides très polaires, les autres à des segments souples peu polaires. La séparation de phase qui apparait lors de la mise en œuvre de ces PUs (contenant des fractions différentes de segments souples et rigides) semble propice à l'apparition de leur électrostriction. C'est ce qu'indique une modélisation récemment proposée qui prédit un facteur de près de 1000 entre forces de Maxwell (ici négligeables) et électrostriction. Le comportement des matériaux résultent clairement de la compétition entre contraintes d'origine électrostatique (dipôles des phases polaires dans un gradient de champ électrique) et contraintes mécaniques liées à la rigidité des phases. L’influence systématique de l'épaisseur des films sur leur activité électromagnétique a été rendue compte: les films minces présentent une plus faible déformation à champ électrique donné que les films plus épais. Les films obtenus par évaporation du solvant utilisé pour dissoudre les PU présentent probablement un gradient de microstructure : en surface, l'évaporation rapide limite la séparation de phase, alors qu'elle est plus avancée à cœur. C’est cohérent avec la modélisation reposant sur la présence de gradient de constante diélectrique au sein des films. Dans une dernière partie, on a cherché à augmenter encore l'électrostriction de ces matériaux en dispersant des particules conductrices à conduction électronique, de taille nanométrique (noir de carbone et nanotubes de carbone). On observe trois effets, l'un correspondant à l'augmentation de la constante diélectrique apparente (celle diverge au seuil de percolation), et un deuxième effet à une augmentation des forces d'attraction locales. En revanche, le troisième effet qui contrecarre les forces d'origine électrostatique puisqu'il résulte de l'augmentation de la rigidité dû à la présence des particules rigides. Là encore, la compétition entre contraintes électrostatique et mécanique conduit à un optimum en termes de fraction volumique de particules renforçantes. / Piezoelectric ceramics are commonly used for actuation applications. However, they suffer from several drawbacks particularly such low electric field-induced strains and difficult implementation inside microelectromechanical systems (MEMS). Recently, electroactive polymers (EAPs) have attracted considerable interest, especially following the publication of elevated electric field-induced strain values. The results have rendered EAPs very attractive for replacing the lead-based ceramics. Three mechanisms are responsible for the electromechanical coupling in electronic EAPs: (i) The piezoelectricity that appears in some crystalline phases, (ii) The “Maxwell” forces when applying an electric field through a capacitor which consists of a flexible polymer film placed between two electrodes, and (iii) The electrostriction, an intrinsic phenomenon related to polar materials, which is still poorly understood. The last two mechanisms result in a quadratic dependence of the deformation with the applied electric field. Among the electrostrictive EAPs, some polyurethanes (PU) have been often cited, and have therefore guided the choice of the materials for this work. The first part was to analyze the electrostrictive behavior of three PUs, made of two partially miscible types of repeating units: the high polar hard segments and the low polar soft segments. The phase separation occurred during the elaboration process of these PU films seems favorable to the emergence of electrostrictive behavior. A model predicted recently an almost 1000 factor between the electrostriction and the Maxwell stress (here negligible). This is clearly related to the competition between the electrostatic strains (polar phases dipoles in a field gradient) and the mechanical stresses. The thickness of films was found to have a strong influence on electromechanical activity: thin films present a lower strain for a given electric field compared to thick films. Depending on the solvent evaporation during the film elaboration, the films exhibit a thickness gradient in the microstructure: Fast evaporation on the surface inhibits the phase separation, whereas it is more favored in the core. This is consistent with the modeling based on the gradient of dielectric constant in PU. In the last part, we aimed to further increase the electrostriction of PU by filling with nanoscale conductive particles (carbon black or carbon nanotubes). This normally results three effects, one corresponding to the increase of the dielectric constant in the vicinity of the percolation threshold, a second effect relates to an increase in local attractive forces which behave as internal constraints. In contrast, the third effect counteracts the electrostatic forces since it results from the increased stiffness due to the hard particles. Again, the competition between electrostatic and mechanical stress leads to an optimum induced-deformation associated to a fraction of reinforcing particles.
|
23 |
Impact of Li non-stoichiometry on the performance of acoustic devices on LiTaO3 and LiNbO3 single crystals / Effet de nonstoechiométrie en Li sur la performance des dispositifs à ondes élastiques à base de monocristaux de LiTaO3 et LiNbO3Gonzalez, Minerva 19 July 2016 (has links)
Les technologies de filtres, résonateurs, oscillateurs et capteurs sont des éléments essentiels dans lesindustries des télécommunications, automobile, militaire, médical, etc. Les monocristaux de LiTaO3 (LT) etLiNbO3 (LN) sont les matériaux les plus utilisés pour la fabrication de filtres de radiofréquence à ondesélastiques des téléphones portables, car ils possèdent un facteur de couplage électromécanique (K2) élevé.Cependant, ils présentent une problématique liée à la variation de la fréquence de fonctionnement avec latempérature (CTF), dont la valeur est environ de -40 à -95 ppm/°C. D’autre part, il a été démontré dans lalittérature que les propriétés de LT et LN changent avec la non-stoechiométrie du Li.L’objectif de cette thèse a été l’étude de l’effet de la concentration en Li2O sur la performance desdispositifs acoustiques à ondes élastiques de surface, utilisant comme substrat piézoélectrique desmonocristaux de LT coupe YXl/42 (42 RY-LT) et LN coupe YXl/128 (128 RY-LT). Cette étude vise àl’amélioration du CTF sans la dégradation d’autres propriétés (K2 et pertes d’insertion) dans le cas du 42 RYLTet la stabilité de dispositifs utilisés à haute densité de puissance dans le cas du 128 RY-LN. Tout d’abord,nous avons préparé des monocristaux de LT et LN avec différente concentration en Li2O :48.5-50 mol%, enutilisant la méthode d’équilibration par transport en phase vapeur (VTE). Ensuite, nous avons fabriqué etcaractérisé des dispositifs à ondes élastiques de volume et de surface à base de LT et LN, traités par VTE, afind’étudier l’effet de la non-stoechiométrie de Li et l’effet des domaines ferroélectriques sur leur performance. / The filter technologies, resonators, oscillators and sensors are essential elements fortelecommunications, automotive, military, medical industries. The most of radio frequency surface acousticwave (RF-SAW) filters, present in mobile phones, are based in LiNbO3 (LN) and LiTaO3 (LT) single crystalsbecause they have high electromechanical coupling factor (K2). However, these materials have a problemrelated to the variation of the operating frequency with temperature (TCF), whose value is about -40 to -95ppm / ° C. On the other hand, it has been previously shown in the literature that the physical and structuralproperties of LT and LN change with Li non-stoichiometry, including elastic properties.The aim of this work was the investigation of the impact of Li2O concentration on the performance ofSAW devices based on YXl/42 (42 RY-LT) and YXl/128 (128 RY-LN) single crystals. In the case of 42 RY-LT,we focused in the reduction of TCF without the degradation of other properties (K2 and insertion losses) andin the case of 128 RY-LN crystals we focused in the stability of devices at high power densities. First, singlecrystals of LT and LN with different Li2O concentration: 48.5-50 ml% were prepared, by using the VaporTransport Equilibration (VTE) method. Afterwards, SAW and bulk acoustic wave (BAW) devices based on LTand LN VTE treated crystals, were fabricated and characterized, in order to study the effect of Li nonstoichiometryand the effect of ferroelectric domains on the performance of devices.
|
24 |
Design of insect-scale flapping wing vehiclesNabawy, Mostafa January 2015 (has links)
This thesis contributes to the state of the art in integrated design of insect-scale piezoelectric actuated flapping wing vehicles through the development of novel theoretical models for flapping wing aerodynamics and piezoelectric actuator dynamics, and integration of these models into a closed form design process. A comprehensive literature review of available engineered designs of miniature rotary and flapping wing vehicles is provided. A novel taxonomy based on wing and actuator kinematics is proposed as an effective means of classifying the large variation of vehicle configurations currently under development. The most successful insect-scale vehicles developed to date have used piezoelectric actuation, system resonance for motion amplification, and passive wing pitching. A novel analytical treatment is proposed to quantify induced power losses in normal hover that accounts for the effects of non uniform downwash, wake periodicity and effective flapping disc area. Two different quasi-steady aerodynamic modelling approaches are undertaken, one based on blade element analysis and one based on lifting line theory. Both approaches are explicitly linked to the underlying flow physics and, unlike a number of competing approaches, do not require empirical data. Models have been successfully validated against experimental and numerical data from the literature. These models have allowed improved insight into the role of the wing leading-edge vortex in lift augmentation and quantification of the comparative contributions of induced and profile drag for insect-like wings in hover. Theoretical aerodynamic analysis has been used to identify a theoretical solution for the optimum planform for a flapping wing in terms of chord and twist as a function of span. It is shown that an untwisted elliptical planform minimises profile power, whereas a more highly tapered design such as that found on a hummingbird minimises induced power. Aero-optimum wing kinematics for hovering are also assessed. It is shown that for efficient flight the flapping velocity should be constant whereas for maximum effectiveness the flapping velocity should be sinusoidal. For both cases, the wing pitching at stroke reversal should be as rapid as possible. A dynamic electromechanical model of piezoelectric bending actuators has been developed and validated against data obtained from experiments undertaken as part of this thesis. An expression for the electromechanical coupling factor (EMCF) is extracted from the analytical model and is used to understand the influence of actuator design variables on actuator performance. It is found that the variation in EMCF with design variables is similar for both static and dynamic operation, however for light damping the dynamic EMCF will typically be an order of magnitude greater than for static operation. Theoretical contributions to aerodynamic and electromechanical modelling are integrated into a low order design method for propulsion system sizing. The method is unique in that aside from mass fraction estimation, the underlying models are fully physics based. The transparency of the design method provides the designer with clear insight into effects of changing core design variables such as the maximum flapping amplitude, wing mass, transmission ratio, piezoelectric characteristics on the overall design solution. Whilst the wing mass is only around 10% of the actuator mass, the effective wing mass is 16 times the effective actuator mass for a typical transmission ratio of 10 and hence the wing mass dominates the inertial contribution to the system dynamics. For optimum aerodynamic effectiveness and efficiency it is important to achieve high flapping amplitudes, however this is typically limited by the maximum allowable field strength of the piezoelectric material used in the actuator.
|
25 |
Multi-scale approaches for the vibration and energy flow through piezoelectric waveguides : simulation strategies, control mechanisms and circuits optimization / Approches multi-échelles pour les vibrations et le transfert énergétique dans les guides d’ondes piézoélectriques : stratégies de simulation, mécanismes de contrôle et circuits d’optimisationFan, Yu 17 June 2016 (has links)
Cette thèse s’interesse au contrôle des flux d’énergie mécanique dans les structures périodiques. Les problèmes de dynamiques des structures considérés dans cette thèse sont abordés sous l'angle d'une description ondulatoire : la réponse forcée d’un système est calculée comme une superposition d’ondes dans la structure, tandis que les modes propres sont interprétés comme des ondes stationnaires.Un des avantages de l’approche ondulatoire est qu’elle permet de réduire de manière importante la taille des problèmes de dynamique. Ceci se révèle particulièrement utile dans le domaine des hautes et moyennes fréquences, où les calculs par éléments finis deviennent très coûteux en temps à cause du grand nombre de degrés de liberté nécessaire à la convergence du modèle. Afin de contourner ce problème, cette thèse s'appuie sur la méthode des éléments finis ondulatoires (Wave Finite Element Method (WFEM)). Une des principales améliorations proposées est l’utilisation de plusieurs méthodes de synthèses modales (Component Mode Synthesis (CMS)) pour accélérer l’analyse des guides d’ondes généraux en présence d’amortissement ou de matériaux piézo-électriques. Les erreurs numériques restent faibles du fait de l’utilisation d'une base de projection réduite constituée d'ondes propagatives. Une autre contribution est le procédé de modélisation multi-échelle pour les assemblages de structures périodiques et non-périodiques. L’idée principale est de modéliser les parties non-périodiques par la méthode des éléments finis, et les parties périodiques par WFEM. Les interactions entre les différentes sous-structures sont modélisées par des coefficients de réflexion ou des impédances mécaniques. Ces travaux réalisent une extension de la WFEM à des structures plus complexes et plus proches des applications industrielles. Un autre intérêt de la vision ondulatoire est qu’elle mène à de nouvelles idées pour le contrôle des vibrations. Dans cette thèse, des matériaux piézo-électriques et des circuits de shunt, distribués de façon périodique sont utilisés afin de modifier artificiellement la propagation des ondes grâce au couplage électromécanique. Un nouveau critère, nommé « Wave Electromechanical Coupling Factor (WEMCF) », est proposé pour évaluer, en termes énergétiques, l’intensité du couplage entre le champ électrique et le champ mécanique lors du passage d'une onde. Ce facteur peut être obtenu à partir des caractéristiques ondulatoires obtenues par la WFEM. On montre que le WEMCF est fortement lié à l'atténuation dans le guide d’ondes piézo-électrique. La conception des paramètres géométriques et électriques peut être ainsi être effectuée séparément. Ce principe est appliqué à la réduction des vibrations d’une poutre encastrée. Le WEMCF est utilisé comme fonction objectif pour l'optimisation durant la conception géométrique, la masse totale de matériau piézo-électriques étant contrainte. Un circuit à capacité négative est utilisé pour élargir le band-gap de Bragg. La stabilité du système est prise en compte comme une contrainte sur la valeur de cette capacité. Les vibrations sont localisées et facilement dissipées par l’introduction d’absorbeurs sur la frontière. Ce procédé de conception basée sur une approche ondulatoire aboutit à des solutions stables, légères, et insensibles aux conditions aux limites dans une large gamme de fréquence. Par conséquent, il est prometteur pour analyser les structures en moyenne et haute fréquence où il est difficile d’accéder aux informations modales exactes. / This thesis describes analysis and control approaches for the vibration and energy flow through periodic structures. The wave description is mainly used to address the structural dynamic problems considered in the thesis: forced response is calculated as the superposition of the wave motions; natural modes are understood as standing waves induced by the propagating waves that recover to the same phase after traveling a whole circle of the finite structure. One advantage of the wave description is that they can remarkably reduce the dimensions of structural dynamic problems. This feature is especially useful in mid- and high frequencies where directly computing the full Finite Element Method (FEM) model is rather time-consuming because of the enormous number of degree-of-freedoms. This thesis extends one widely used wave-based numerical tool termed Wave Finite Element Method (WFEM). The major improvements are the use of several Component Mode Synthesis (CMS) methods to accelerate the analysis for general waveguides with proportional damping or piezoelectric waveguides. The numerical error is reduced by using the proposed eigenvalue schemes, the left eigenvectors and the reduced wave basis. Another contribution is the multi-scale modeling approach for the built-up structures with both periodic and non-periodic parts. The main idea is to model the non-periodic parts by FEM, and model the periodic parts by WFEM. By interfacing different substructures as reflection coefficients or mechanical impedance, the response of the waveguide is calculated in terms of different scales. These two contributions extend WFEM to more complex structures and to more realistic models of the engineering applications.Another benefit of the wave perception is that it leads to new ideas for vibration control. In this thesis periodically distributed piezoelectric materials and shunt circuit are used to artificially modify the wave properties by electric impedance. A novel metrics termed the Wave Electromechanical Coupling Factor (WEMCF) is proposed, to quantitatively evaluate the coupling strength between the electric and mechanical fields during the passage of a wave. This factor can be post-processed from the wave characteristics obtained from WFEM through an energy formula. We show that WEMCF is strongly correlated to the best performance of the piezoelectric waveguide. Hence the design for the geometric and electric parameters can be done separately. An application is given, concerning the vibration reduction of a cantilever beam. WEMCF is used as an optimization objective during the geometric design, when the overall mass of the piezoelectric materials is constrained. Then the negative capacitance is used with a stability consideration to enlarge the Bragg band gap. The vibration is localized and efficiently dissipated by few boundary dampers. The wave-based design process yields several broadband, stable, lightweight and boundary condition insensitive solutions. Therefore, it is promising at mid- and high frequencies where exact modal information is difficult to access.
|
26 |
Měření parametrů piezoelektrických materiálů / Piezoceramics MeasurementsFialka, Jiří January 2009 (has links)
The master’s thesis deals with the piezoelectric coefficients, the resonance frequency and especially the piezoelectric constants verification. With the assistance of several devices, for instance LCR-meter HIOKI 3532, impedance analyzer Agilent 4294A and LCR-meter Agilent E4980A, the resonance and the anti-resonance frequencies as well as impedance and capacitance of samples are measured. The paper opens with the theory of the piezoelectric phenomenon and the difference between direct and indirect piezoelectric phenomenon, it also describes the basic behaviour of a piezoelectric ceramic element during mechanical straining or applied voltage. Further, the paper concerns the description of various piezoelectric constants and their calculations. Subsequent part of the paper is devoted to the temperature dependence of the main piezoelectric parameters of PZT ceramics. The materials coefficients are delineated as a function of temperature of the piezoelectric charge coefficients dij, relative permittivity r, electromechanical coupling factor kij and frequency constants Ni. One of the chapters also determines the piezoelectric charge constant d33 of PZT ceramics by laser interferometer and compares it with the value measured by resonance methods. The surface displacement was measured by a single-beam interferometer Polytec OFV-5000. The results of measurements of piezoelectric charge coefficients d33 acquired by the first and the second method are identical. The last section of the paper is focused on different methods of experimental studies on the characteristics of heat transfer by diffusing heat through conduction between the silver-plated surface of cylinder made of PZT ceramics. The effect on the resonance and the anti-resonance frequencies is monitored. There after, the real heat, determined by thermo camera and the physical model of heat transfer created in program COMSOL Multiphysics, is analysed.
|
Page generated in 0.1057 seconds