• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 42
  • 40
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 194
  • 194
  • 145
  • 47
  • 45
  • 34
  • 34
  • 33
  • 28
  • 24
  • 23
  • 22
  • 22
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Odstranění šumu z obrazů kalibračních vzorků získaných elektronovým mikroskopem / Denoising of Images from Electron Microscope

Holub, Zbyněk January 2017 (has links)
Tato Diplomová práce je zaměřena na odstranění šumu ze snímků získaných pomocí Transmisního elektronového mikroskopu. V práci jsou popsány principy digitalizace výsledných snímků a popis jednotlivých šumových složek, které vznikají při digitalizaci snímků. Tyto nechtěné složky ovlivňují kvalitu výsledného snímku. Proto byly vybrány filtrační metody založené na minimalizaci totální variace, jejichž principy jsou v této práci popsány. Jako referenční filtrační metoda byla vybrána filtrace pomocí Non-local means filtru. Tento filtr byl vybrán, jelikož v dnešní dobře patří mezi nejvíce využívané metody, které mají vysokou účinnost. Pro objektivní hodnocení kvality filtrací byly použity tyto hodnotící kritéria – SNR, PSNR a SSIM. V závěru této práce, jsou všechny získané výsledky zobrazeny a jsou diskutovány účinnosti jednotlivých filtrační metod.
72

Etude du comportement cyclique et de l'endommagement par fatigue d'un alliage d'aluminium anisotrope du type 2017A / Study of the cyclic behavior and the fatigue damage of an anisotropic 2017A aluminium alloy

May, Abdelghani 25 June 2013 (has links)
Cette thèse s’ajoute aux différents travaux de recherche qui traitent des alliages d’aluminium fortement utilisés dans l’industrie aéronautique et contribue fortement à comprendre le comportement élastoplastique en chargement cyclique à contrainte imposée du 2017A. L’apport essentiel de ce travail est l’étude de l’anisotropie propre du matériau utilisé à travers le suivi de l’évolution des différents paramètres caractérisant la plasticité cyclique de notre matériau. En effet, nous avons caractérisé cette anisotropie en comparant le comportement du matériau en traction-compression avec celui de la torsion alternée selon l’évolution cyclique de la réponse contrainte-déformation, l’évolution de l’état stabilisé, l’évolution des variables d’écrouissages cinématique et isotrope ainsi que l’anisotropie selon le comportement en fatigue et endommagement. Pour mieux affiner la partie expérimentale de ce travail, des investigations microstructurales des faciès de rupture de toutes les éprouvettes utilisées ont été effectuées afin de mieux comprendre les mécanismes d’endommagement cyclique dans notre matériau. Dans la partie numérique de cette thèse, nous avons réalisé des simulations numériques en utilisant la dernière version du modèle multimécanismes qui tient compte de l’anisotropie du matériau. Les résultats de ces simulations, réalisées en considérant les mêmes conditions de nos essais expérimentaux, confirment les capacités de cette nouvelle version à estimer le comportement élastoplastique d’un matériau anisotrope. / The present work is devoted to study the anisotropic behavior of an extruded aluminum alloy under cyclic loading in axial and shear directions. In the first part, we have studied its elastoplastic behavior through the evolution of stress–strain loops, isotropic and kinematic hardening and we have associated this behavior with the evolution of its elastic adaptation (shakedown). We have studied the behavior of the material in fatigue damage using the evolution of stiffness. Microstructural investigations were performed on fractured surfaces using scanning electron microscope (SEM) in orderto understand the evolution of fatigue damage during cyclic loading. In the second part, we have simulated all the tests performed in the experimental part using the new version of multimechanisms model. The obtained results show that this version is able to take into account the anisotropic behavior of the materials under stress controlled tests.
73

Radiation Response of Nanostructured Cu

Cuncai Fan (7036280) 02 August 2019 (has links)
Irradiation of metals with energetic particles causes heavy damage effects in microstructure and mechanical properties, which is closely associated with irradiation conditions, presence of impurities, and microstructural features. It has been proposed that the radiation tolerance of a certain material can be enhanced by introducing a high density of interfaces, acting as ‘sinks’ that can frequently involve in attracting, absorbing and annihilating defects. Nanostructured materials with large volume fraction of interfaces, therefore, are assumed to be more radiation tolerant than conventional materials. This thesis focuses on the radiation damage effects in nanostructured Cu via the methods of in-situ TEM (transmission electron microscope) radiation experiments, postirradiation TEM analyses, small-mechanical tests (nanoindentation and micro-pillar compression), and computer simulations (molecular dynamics and phase-field modeling). We design and fabricate nanostructured Cu using direct current (DC) magnetron sputtering deposition technique, a typica physical vapor deposition (PVD) method and a bottom-up way to construct various nanostructured metals. High-density twin boundaries (TBs) and nanovoids (NVs) are introduced into two distinct nanostructured Cu films, including nanovoid-nanotwinned (NVNT) Cu (111) and nanovoid (NV) Cu (110). The in-situ high-energy Kr<sup>++</sup> (1 MeV) and ex-situ low energy He<sup>+</sup> (< 200 keV) irradiations are subsequently preformed on the as-deposited Cu samples. On the one hand, the in-situ TEM observations suggest that TBs and NVs can influence the formation, distribution and stability of radiation-induced defects. Meanwhile, the preexisting microstructures also undergo structural change through void shrinkage and twin boundary migration. On the other hand, the ex-situ micro-pillar compression tests reveal that the Heirradiated NV-NT Cu contains less defect clusters but experiences more radiation-induced hardening. The underlying mechanisms of void shrinkage, twin boundary migration, and radiationinduced hardening are fully discussed based on post-irradiation analyses and computer simulations.
74

Experimental Investigation on Inclusions in Medium Manganese Steels and High Manganese Steels

Alba, Michelia January 2021 (has links)
Advanced High Strength Steel (AHSS) has become a popular steel grade among automakers to produce vehicle bodies. With improvements in strength and elongation, AHSS has evolved to its 2nd generation, including high manganese steel. Even though it has outstanding strength, the 2nd generation of AHSS faces some production problems due to its high alloying elements. With continual improvement, the 3rd generation of AHSS is currently in production. In this generation, the steel types still have a competitive strength and elongation like the 2nd generation of AHSS while having lower alloying element contents and production costs. One of the types of 3rd generation AHSS is medium manganese steel. Research related to the 2nd and 3rd generation of AHSS mainly focuses on their mechanical properties and microstructures. As there is a strong correlation between mechanical properties and inclusion characteristics, further investigation of the evolution of inclusions is still required. In this study, high-temperature experiments were conducted to investigate the effects of metal chemistry on the inclusion evolution in liquid steel. The concentrations of manganese, aluminum, and nitrogen were varied systematically. Two and three-dimensional analysis techniques were applied to study the number, composition, and size distribution of inclusions. Electrolysis extraction was used to identify the oxide, sulfide, and nitride inclusions, whereas an automated SEM with an ASPEX feature was used to detect a larger number of inclusions for better representation of the steel matrix. This work has established inclusion classification rules to distinguish nitride inclusions from oxide inclusions. To the best of the authors’ knowledge, this is the first discussion of this type of inclusion classification in the open literature. Based on the automated SEM (ASPEX Feature) analysis, the type of detected inclusions in medium and high manganese steels were Al2O3(pure), Al2O3-MnS, AlN(pure), AlN-MnS, AlON, AlON-MnS, and MnS inclusions. As the manganese content in the steel increased from 2% to 20%, the total amount of inclusions, especially AlN-contained inclusions, was raised. This phenomenon occurred due to the increase in nitrogen solubility with increased manganese content in the steel. The thermodynamic calculation also predicted that AlN inclusions would form when the steel was cooled or during the solidification. Moreover, AlN and MnS inclusions were observed to co-precipitate together. Similar to manganese, the increase in the aluminum content (Al = 0.5-6%) increased the total amount of inclusions in the steel, and the dominant inclusion type is AlN. AlN and Al2O3 inclusions can be heterogenous nucleation sites for MnS inclusions. Furthermore, Al2O3 inclusions also became heterogeneous nucleation sites for AlN inclusions. The experimental set-up was further modified to investigate the effect of nitrogen on the formation of inclusions in the medium manganese steels. The nitrogen was introduced by purging or injecting N2 gas into the steel system. Similar to the effect of manganese and aluminum, the increase in the nitrogen content also increased the total amount of inclusions. Once the nitrogen content in the steel exceeded the critical limit for the formation of AlN inclusions, AlN inclusions can be stable in the liquid steel. Moreover, regardless of the nitrogen content in the steel, AlN-MnS inclusions were formed in the slow-cooled steels. In terms of morphology, AlN inclusions can be formed of plate-like, needle, angular, agglomerate, or irregular shapes. Furthermore, a brief investigation on the addition of calcium and nitrogen to the medium manganese steels found that calcium led to the formation of other complex inclusions, such as CAx and CAS-Other inclusions. In the medium manganese steel composition in the present study, the number of CAS-Other inclusions was dominated by (Ca,Mn)S-Oxide inclusions after the addition of Ca. However, with time and after introducing N2 gas into the steel, the number of (Ca,Mn)S-Nitride inclusions also increased. The formation of (Ca,Mn)S-Nitride inclusions resulted from the co-precipitation of CaS, MnS, and AlN. The current work provides a better understanding of the formation mechanism of inclusions in medium manganese steels and high manganese steels. It presents complete information on the characteristics of inclusions, such as the number density, type, and morphology of inclusions. This knowledge can help steelmakers improve the steelmaking process to control the formation of inclusions, which can be problematic for the manufacture and performance of medium manganese steels and high manganese steels. / Dissertation / Doctor of Philosophy (PhD)
75

Thesis_Mann_Final.pdf

Thomas R Mann (15348394) 26 April 2023 (has links)
<p>Ni-base superalloys are among the highest temperature capable alloys and are used pervasively throughout the transportation, energy, and nuclear industries. However, their microstructures have been largely limited to containing the γ´ (cubic) and γ´´ (tetragonal) phases to enable high strength at elevated temperatures, and this fixation has restricted alloy development opportunities. In the past three decades, a new set of alloys, strengthened by the γ´´´ (orthorhombic) phase, was developed by Haynes International. The alloys exhibit comparable strength to existing Ni-based superalloys and show a 25% decrease in the thermal expansion coefficient, designed for tighter clearances (thus improving engine efficiency) and help to reduce thermally induced fatigue from engine cycling. </p> <p>The newest iteration of such alloys, HAYNES<sup>®</sup> 244<sup>®</sup>, has a nominal composition of Ni-22.5Mo-8Cr-6W (wt.%), and each alloying element is used to help precipitate the γ´´´-Ni<sub>2</sub>(Cr, Mo, W) phase. The deformation mechanisms of this material are currently unknown. Previous studies investigating the predecessor alloy, HAYNES<sup>®</sup> 242<sup>®</sup> alloy, showed deformation twinning to be the dominant deformation mechanism during mechanical testing, but the physical phenomena responsible for this mode of deformation were not clearly elucidated. As a result, the primary motivation of this project is to understand the deformation behavior of the 244 alloy from the atomistic level and upwards. </p> <p>This work details efforts to elucidate these deformation mechanisms using an integrated computational and experimental approach. First-principles calculations were performed to determine the entire generalized stacking fault energy (GSFE) surface and slip pathways of the γ´´´ phase for dislocation slip. The various planar defects that could form from dislocation slip were predicted to provide significant barriers for dislocation motion due to their very high planar defect energies (~1000 mJ/m<sup>2</sup>), likely precluding shearing of the precipitates. We incorporated these results into phase field dislocation dynamics (PFDD) to simulate dislocation-precipitate interactions of finite size. These results showed that the planar defect energies of the γ´´´ phase largely govern the deformation behavior and critical resolved shear stress for precipitate shearing, regardless of precipitate shape, size, or orientation. Extensive mechanical testing conducted from room temperature up to 760 ºC over strain rates ranging from 10<sup>-9</sup> s<sup>-1</sup> to 10<sup>-4</sup> s<sup>-1</sup> combined with transmission electron microscopy validated the predicted deformation structures of creep and tensile samples. Shearing of individual precipitates by intrinsic and extrinsic stacking faults, as well as extensive deforming twinning, was observed. The integrated GSFE and PFDD simulations showed that the precipitates would resist dislocation shearing and favor twinning as the preferred deformation mechanism at all temperatures and strain rates investigated. These results provide pathways for microstructural and composition modification to further increase the strength of γ´´´ strengthened alloys in the future.</p> <p><br></p>
76

Electrolytic Extraction of Aluminium Bifilms

Bergfors, Simon, Flink, Davida January 2020 (has links)
Bifilms is the oxide layer created between two surfaces in the melt of light metals that form an oxide layer. These become planar inclusions in the final casting and are problematic for the mechanical properties such as cracks and crack initiations. Bifilms are too thin to be viewed properly in two dimension cross-section method as they will only appear as thin lines. Because of this, it is relevant to test if it is possible to use electrolytic extraction (EE) as a alternative method to investigate bifilms. Both the deeply etched surface and the inclusions on a filter from the extraction are looked at in the scanning electron microscope (SEM) to get an understanding of the size and shape of the inclusions. With this, a greater understanding of these types of defects can be achieved. After both the filtered inclusions and the surface are examined in SEM with images and Energy-dispersive X-ray spectroscopy (EDS), the images are measured in the software ImageJ. The measurements and analysis show that it is probably bifilms and that they can be relatively large, and not so circular. However, the measurements with the filter have shown high levels of oxygen and carbon. Some levels of chlorine, nitrogen and iron have also been found. But if the surface is compared to the metal surface, it can be concluded that it is likely that bifilms have been found. There are sufficient levels of aluminum and oxygen present. Images in SEM also show the appearance of film-like inclusions. If the method of electrolytic extraction is to be improved to investigate bifilms,optimizations such as filters of other compositions are recommended. / Bifilms är det oxidskikt som skapas mellan två ytor i smältan hos lätta metaller som bildar ett oxidskikt. Dessa blir sedan plana inneslutningar i den slutliga gjutningen och är problematiskt för de mekaniska egenskaperna i form av sprickor och sprickinitieringar. Bifilms är för tunna för att de ska kunna ses korrekt i en tvärsnittsmetod, eftersom de bara kommer att visas som tunna linjer. På grund av detta är det relevant att testa om det är möjligt att använda elektrolytisk extraktion (EE) som en alternativ metod. Både den djupt etsade ytan och inneslutningarna på ett filter från extraktionen tittas på i svepelektronmikroskop för att få en förståelse för inneslutningarnas storlek och form. I och med det kan en högre förståelse uppnås för dessa typer av defekter. Efter att både de filtrerade inneslutningarna och ytan granskats i SEM med bilder och Energy-dispersive X-ray spectroscopy (EDS), mäts bilderna i en mjukvara, ImageJ. De mätningarna och analyserna visar att det antagligen hittats bifilms och att de kan vara förhållandevis stora, samt inte så cirkulära. Däremot har mätningarna med filtret visat höga halter av syre och kol. Även vissa halter av klor, kväve och järn har hittats. Men om ytan jämförs med metallytan så kan en slutsats dras om att det är troligt att bifilms har hittats. Där finns tillräckliga halter av aluminium och syre. Även bilder i SEM påvisar filmliknande inneslutningar till sitt utseende. Om metoden med elektrolytisk extraktion ska förbättras för att undersöka bifilms behövs optimeringar, som till exempel filterav en annan sammansättning.
77

Analýza obrazu pro korekci elektronových mikroskopů / Image analysis for correction of electron microscopes

Smital, Petr January 2011 (has links)
This thesis describes the physical nature of corrections of an electron microscope and mathematical methods of image processing required for their complete automation. The corrections include different types of focusing, astigmatism correction, electron beam centring, and image stabilisation. The mathematical methods described in this thesis include various methods of measuring focus and astigmatism, with and without using the Fourier transform, edge detection, histogram operations, and image registration, i.e. detection of spatial transformations in images. This thesis includes detailed descriptions of the mathematical methods, their evaluation using an “offline” application, descriptions of the algorithms of their implementation into an actual electron microscope and results of their testing on the actual electron microscope, in the form of a video footage grabbed from its control computer’s screen.
78

Scintilační detektor sekundárních elektronů pro environmentální rastrovací elektronový mikroskop / Scintillation SE detector for ESEM

Odehnal, Adam January 2016 (has links)
Thesis deals with theoretical knowledge about scanning electron microscopy and environmental scanning electron microscopy. It describes principle of operation, signals generated by interaction between primary electron beam and specimen and means of detection of secondary electron signal in environmental conditions using scintillation detector. Furthermore, thesis focuses on optimization of detection od secondary electrons by adjusting electrode system of scintillation detector. Computer program Simion is used for modelling signal electron trajectories for proper adjustments. Simulation were starting-point for adjusting the design of the detector. Detection efficiency of adjusted detector was determined by evaluating signal magnitude from captured images, secondary electron detection capability from voltage contrast and quality of the captured images from signal/noise ratio.
79

Comparative Morphology of Sensilla Styloconica on the Proboscis of North American Nymphalidae and Other Selected Taxa: Systematic and Ecological Considerations.

Petr, Daniel 12 1900 (has links)
Sensilla styloconica on the proboscis of 107 species of North American and tropical butterflies were comparatively studied using the scanning electron microscope. Focus was on 76 species of North American Nymphalidae representing 45 genera and 11 subfamilies. Nomenclature for generalized and specific types of nymphalid sensilla is proposed. Written descriptions and micrographs are presented for each species studied. Morphological features were generally consistent for all or most species within genera and sometimes within subfamilies, with specified exceptions. Statistical analysis revealed significant differences for six of eight variables tested between two distinct feeding guilds of North American Nymphalidae. Average number, density, extent of proboscis coverage with sensilla, their total length, and shoulder spine length were all significantly greater in the non-nectar feeding guild than in nectar feeders, and may indicate adaptation for greater efficiency in feeding on flat surfaces. The greater frequency of apical shoulder spines in non-nectar feeders may represent adaptation for protection of sensory pegs from mechanical abrasion during feeding, or for anchoring the flexible proboscis tip to the surface. Correlation analysis revealed 9 out of 28 positive correlations in nectar feeders and 5 out of 28 in non-nectar feeders. Results of preliminary cladistic analysis were not considered to be meaningfully robust due to few available characters. The stylar characters identified in this study should be more useful in future analyses when included with characters from other lines of evidence. The presence of sensilla styloconica in all subfamilies of Nymphalidae, except Danainae, largely supports Ehrlich's (1958) higher classification concept for the family. The presence of less conspicuous sensilla in the Danainae, and other characteristics are presented as further evidence that they should be reconsidered for full family status. Sensilla styloconica in nymphalid butterflies appear to function as extensions that provide greater sensory reach during feeding. The role of these sensilla in liquid uptake, pollen feeding, and host plant selection is discussed.
80

Laser Beam Pathway Design and Evaluation for Dielectric Laser Acceleration

Rasouli, Karwan January 2019 (has links)
After nearly 100 years of particle acceleration, particle accelerator experiments continue providing results within the field of high energy physics. Particle acceleration is used worldwide in practical applications such as radiation therapy and materials science research. Unfortunately, these accelerators are large and expensive. Dielectric Laser Acceleration (DLA) is a promising technique for accelerating particles with high acceleration gradients, without requiring large-scale accelerators. DLA utilizes the electric field of a high energy laser to accelerate electrons in the proximity of a nanostructured dielectric surface.The aim of this project was limited to laser beam routing and imaging techniques for a DLA experiment. The goal was to design the laser beam pathway between the laser and the dielectric sample, and testing a proposed imaging system for aiming the laser. This goal was achieved in a test setup using a low-energy laser. In the main setup including a femtosecond laser, the result indicated lack of focus. For a full experimental setup, a correction of this focus is essential and the beam path would need to be combined with a Scanning Electron Microscope (SEM) as an electron source.

Page generated in 0.0713 seconds