• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 44
  • 33
  • 33
  • 17
  • 13
  • 12
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Feasibility Study on Additive Manufacturing of Copper Windings using Electron Beam Melting

Wiele, Marilena, Abulawi, Murad January 2023 (has links)
Within the framework of this thesis, the electron beam melting of pure copper for the purpose of producing electrical windings was examined. The conventional manufacturing process of copper windings was investigated, and the potential advantages offered by the design freedom inherent in the electron beam melting process were explored. A comprehensive parameter study was conducted to optimize the existing production parameters for the electron beam melting of pure copper, with a specific focus on achieving the desired material properties suitable for electric motor windings. Moreover, according to additive manufacturing possibilities, conceptual winding models were developed and subsequently were fabricated in a laboratory setting using electron beam melting. The investigation revealed a notable correlation between the achievable wall thickness and the focus offset. A focused electron beam, which was achieved with a focus offset of 17 mA, allowed for the production of thinner walls with reduced surface roughness. Additionally, the study highlighted that the density of the manufactured parts decreased as the hatch offset increased, particularly posing a more critical impact on smaller cross-sectional areas than larger ones. Furthermore, implementing a double-scanned contour for the hatch contributed to diminishing roughness while simultaneously increasing the maximum density to 99.6 %. Influencing the electrical conductivity of printed copper samples through heat treatment was successfully demonstrated, resulting in a conductivity of 91.7% ± 1.8% IACS post-heat treatment. / Inom ramen för denna avhandling undersöktes elektronstrålesmältningen av ren koppar i syfte att producera elektriska lindningar. Den konventionella tillverkningsprocessen av kopparlindningar undersöktes, och de potentiella fördelarna som erbjuds av designfriheten som är inneboende i elektronstrålesmältningsprocessen undersöktes. En omfattande parameterstudie genomfördes för att optimera befintliga produktionsparametrar för elektronstrålesmältning av ren koppar, med särskilt fokus på att uppnå önskade materialegenskaper lämpliga för elmotorlindningar. Dessutom, i enlighet med additiva tillverkningsmöjligheter, utvecklades konceptuella lindningsmodeller och tillverkades därefter i laboratoriemiljö med användning av elektronstrålesmältning. Undersökningen avslöjade en anmärkningsvärd korrelation mellan den möjliga väggtjockleken och fokusförskjutningen. En fokuserad elektronstråle, som uppnåddes med en fokusförskjutning på 17 mA, möjliggjorde produktion av tunnare väggar med minskad ytjämnhet. Dessutom visade studien att densiteten hos de tillverkade delarna minskade när avståndet mellan smältlinjerna ökade, vilket i synnerhet innebar en mer kritisk påverkan på mindre tvärsnittsareor än större. Dessutom bidrog implementeringen av en dubbelskannad kontur för luckan till att minska grovheten samtidigt som den maximala densiteten ökade till 99,6 %. Att påverka den elektriska ledningsförmågan hos tryckta kopparprover genom värmebehandling demonstrerades framgångsrikt, vilket resulterade i en ledningsförmåga på 91,7 % ± 1,8 % IACS efter värmebehandling.
42

Разработка рекомендаций по внедрению аддитивных технологий в российское металлургическое производство : магистерская диссертация / Development of recommendations on the introduction of additive technologies in the Russian metallurgical industry

Соколов, И. А., Sokolov, I. A. January 2018 (has links)
This qualification work consist of 123 pages, 30 pictures, 13 tables, 61 references and 2 appendixes. Object – Additive manufacturing in metallurgy. Subject – Organizational, technical and economic relations arising in the manufacturing processes of products based on additive technologies. The main purpose is developing of recommendations for involving the additive technologies taken into account business processes’ changes and production activities’ reflections of economic models. Research objectives: 1 Studying the influence of additive technologies on economic development in Russia and abroad. Identifying the main application branches of manufacturing. 2 Determination the current trends in additive technologies’ progress. Characterization the main processes and specifications. 3 Creating strategic elements for implementing the additive technologies, making aspects of business processes and functional economic models. Scientific novelty lies in the forming the upgraded supply chain at the areas of internal and external environment, and working-out universal business model of companies’ activities in the case of involving the additive technologies. Investment projects were calculating for comparison between the SLM and EBM technologies. Indicators of investment attractiveness of these technologies are presented. A method has been developed that allows to assess the ability of companies to introduce additive technologies, which has an advisory nature. / Выпускная квалификационная работа магистранта содержит 123 с, 30 рис., 13 табл., 61 библиографический источник, 2 приложения. Объект исследования – аддитивные технологии в металлургии. Предмет исследования – организационно-технические и экономические отношения, возникающие в процессе изготовления изделий на основе аддитивных технологий. Целью диссертационной работы является разработка рекомендаций по внедрению аддитивных технологий в металлургическое производство с учетом изменений в бизнес-процессах и экономических моделях, отражающих производственную деятельность предприятий. Цель обусловила ряд следующих задач: 1 Изучить влияние аддитивных технологий на экономическое развитие в России и за рубежом, обозначить основные перспективы их применения в различных отраслях экономики. 2 Определить современные тенденции развития аддитивных технологий в металлургии, охарактеризовать основные технологические процессы и их параметры. 3 Разработать элементы стратегии внедрения аддитивных технологий с учетом изменения в бизнес-процессах и экономических моделях функционирования организаций. Дано описание процессов аддитивного производства. За основу были взяты наиболее изученные технологии – процессы SLM и EBM, применительно к производству изделий из сплава Ti-6Al-4V и его отечественного аналога, сплава ВТ6. Приведены аспекты влияния аддитивных технологий на изменения в цепочках поставок и бизнес-моделях функционирования организации. Произведены расчеты инвестиционных проектов представленных технологий аддитивного производства. Представлен механизм оценки возможности организации к внедрению аддитивных технологий, имеющий рекомендательный характер.
43

Estudio del comportamiento por crecimiento de grieta de aleaciones fabricadas por adición mediante haz de electrones

Niñerola González, Rubén 04 July 2022 (has links)
[ES] Los procesos convencionales de transformación de materiales requieren afrontar nuevos retos que se presentan en la actual sociedad industrial como es la propia sostenibilidad medioambiental. De la misma forma, los productos fabricados en el futuro deberán cumplir ciertos requisitos medioambientales, como la reciclabilidad de la materia prima utilizada. Dentro de este contexto la fabricación de productos mediante técnicas tridimensionales como la fabricación aditiva, permite utilizar únicamente el material necesario que se requiere para un producto completo. Dichas técnicas de fabricación son las solicitadas por el sector aeronáutico, entre otros, que requiere de unos valores de calidad muy exigentes. Dentro de estos ensayos, el estudio del comportamiento del material ante crecimiento de grieta es de gran importancia. Mediante este tipo de fabricación se obtiene un producto en estado casi final a través de la adición de capas de alrededor de 100 micras, que da como resultado una orientación de grano metalúrgico preferente y diferente a la misma aleación fabricada por forja convencional. Los fenómenos ocurridos durante la fabricación pueden dar lugar a defectos como grietas o porosidades que disminuyen las capacidades resistentes, por lo que un estudio para predecir la vida del componente es importante. Dentro de los procesos de fabricación aditiva nos encontramos con la fabricación por haz de electrones, que consigue calidades de material casi con porosidad nula, por lo que empresas del sector aeronáutico o médico consideran esta técnica como de gran fiabilidad. El trabajo desarrollado en esta tesis se basa en el estudio de aleaciones de titanio fabricadas mediante fabricación aditiva por haz de electrones. En concreto, el estudio se centra en el comportamiento a tenacidad a la fractura para relacionarlo con las características microestructurales más relevantes. Los análisis llevados a cabo consideran diversas orientaciones que tienen lugar en la bandeja de fabricación, realizándose ensayos mecánicos tanto estáticos como dinámicos. Una segunda parte de la tesis se basa en el modelado mediante elementos finitos extendido, XFEM, que se desarrolla como alternativa a los métodos tradicionales de mallado. En el XFEM una aproximación de elementos finitos se construye de forma que sea capaz de representar funciones de enriquecimiento dentro de los elementos mediante grados de libertad adicionales. Un punto crítico en el proceso de cálculo mediante elementos finitos es el proceso de mallado. La precisión obtenida en la aproximación depende del tamaño de los elementos de la malla. Por tanto, el cálculo con precisión en puntos importantes como la zona cercana a grieta exige una malla con un tamaño de elemento muy pequeño. Con la técnica XFEM se alcanza una mayor precisión mediante un proceso de enriquecimiento de extremo de grieta. Los resultados que ofrece la herramienta XFEM se comparan con los obtenidos experimentalmente con componentes fabricados mediante impresión 3D. Esta comparativa se lleva a cabo sobre diversas geometrías con la presencia de agujeros, de tal forma que se ha podido predecir el crecimiento de grieta que tiene lugar en materiales por impresión 3D. De la misma forma, se llevan a cabo comparativas de piezas con geometría compleja, para validar el modelo desarrollado. / [CA] Els processos convencionals de transformació de materials requereixen afrontar nous reptes que es presenten en l'actual societat industrial com és la pròpia sostenibilitat mediambiental. De la mateixa forma, els productes fabricats en el futur hauran de complir certs requisits mediambientals, com el reciclatge de la matèria primera. Dins d'aquest context, la fabricació de productes mitjançant tecnologia 3D com la fabricació additiva, permet usar només el material necessari que es requereix per a un producte complet. Aquestes tècniques de fabricació són les sol·licitades pel sector aeronàutic que requereix d'uns valors de qualitat molt exigents. Dins d'aquests assajos, l'estudi del comportament del material a través de creixement de clivella és vital. Mitjançant aquesta mena de fabricació s'obté un producte en estat quasi final a través de l'addició de capes d'alçària al voltant de 100 micres, que dona com a resultat una orientació de gra metal·lúrgic preferent i diferent al mateix però fabricat convencionalment. Els fenòmens ocorreguts durant la fabricació poden donar lloc a defectes com a clivelles o porositats que poden disminuir les capacitats resistents, per la qual cosa un estudi per a predir la vida del material és important. Dins dels processos de fabricació additiva ens trobem amb la fabricació per feix d'electrons la qual aconsegueix qualitats de material quasi amb porositat nul·la, per la qual cosa empreses del sector aeronàutic i mèdic han conclòs a aquesta tècnica com la més fiable. El treball desenvolupat en aquesta tesi es basa en l'estudi d'aliatges de titani fabricades mitjançant fabricació additiva per feix d'electrons, principalment el seu comportament a la tenacitat a la fractura per a relacionar-ho amb les característiques microestructurals més rellevants. Les anàlisis dutes a terme se centren en diverses orientacions que tenen lloc en la plataforma de fabricació, realitzant-se assajos mecànics tant estàtics com dinàmics. Una segona part de la tesi es basa en el modelatge mitjançant elements finits estesos, XFEM, que es desenvolupa com a alternativa als mètodes lliures de malla. En el XFEM una aproximació d'elements finits es construeix de manera que siga capaç de representar funcions (enriquiment) dins dels elements. Un punt crític en el procés de càlcul en qualsevol mètode que usa una malla és el procés d'emmallat. La precisió obtinguda en l'aproximació depén de la grandària dels elements de malla. Per tant, el càlcul amb precisió en punts importants, com la zona pròxima a clivella, exigeix l'ús d'una malla amb una grandària d'element molt xicoteta. Amb la tècnica XFEM aconseguim aqueixa precisió mitjançant un procés de enriquiment. / [EN] Conventional material transformation processes require facing new challenges that arise in today's industrial society, such as environmental sustainability. Similarly, products manufactured in the future must meet certain environmental requirements, such as the recyclability of the raw material used. Within this context, the manufacture of products using 3D technology such as additive manufacturing, allows using only the necessary material that is required for a complete product. These manufacturing techniques are requested by the aeronautical sector, which requires very demanding quality values. Within these tests, the study of the behavior of the material through crack growth is of great importance. By means of this manufacturing technology, a product is obtained in an almost final state through the addition of layers of about 100 microns, which results in a preferential metallurgical grain orientation and different from the same alloy manufactured by conventional methods. The phenomena occurring during manufacturing can lead to defects such as cracks or porosities that can reduce the strength capabilities, so a study to predict the life of the component is important. Within the additive manufacturing processes we find the electron beam manufacturing which achieves material qualities with almost zero porosity. As a consequence, companies in the aeronautical or medical sector have concluded this technique as very reliable. The work developed in this thesis is based on the study of titanium alloys manufactured by electron beam additive manufacturing. More precisely, the work is focused on the fracture toughness behavior in order to relate it to the most relevant microstructural characteristics. The analyses carried out consider different orientations and positions that take place in the fabrication tray, performing both static and dynamic mechanical tests. A second part of the thesis is based on the application of the extended finite element method, XFEM, which is developed as an alternative to conventional finite element method. In XFEM a finite element approximation is constructed in such a way that it is able to represent functions within the elements. A critical point in the calculation process in the finite element method is the meshing process. The accuracy obtained in the approximation depends on the size of the elements of the mesh. Therefore, accurate computation at important points such as the near-crack zone requires the use of a mesh with a very small element size. With the XFEM technique, we achieve this accuracy by means of an enrichment process. The results provided by the XFEM tool are compared with those obtained experimentally with respect to components manufactured by 3D printing. This comparison is carried out on different geometries with the presence of holes, in such a way that it has been possible to predict the crack growth that takes place in 3D printed materials. In the same way, comparisons of parts with complex geometry are carried out to validate the developed model. / Niñerola González, R. (2022). Estudio del comportamiento por crecimiento de grieta de aleaciones fabricadas por adición mediante haz de electrones [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/183818 / TESIS
44

Resolution-aware Slicing of CAD Data for 3D Printing

Onyeako, Isidore January 2016 (has links)
3D printing applications have achieved increased success as an additive manufacturing (AM) process. Micro-structure of mechanical/biological materials present design challenges owing to the resolution of 3D printers and material properties/composition. Biological materials are complex in structure and composition. Efforts have been made by 3D printer manufacturers to provide materials with varying physical, mechanical and chemical properties, to handle simple to complex applications. As 3D printing is finding more medical applications, we expect future uses in areas such as hip replacement - where smoothness of the femoral head is important to reduce friction that can cause a lot of pain to a patient. The issue of print resolution plays a vital role due to staircase effect. In some practical applications where 3D printing is intended to produce replacement parts with joints with movable parts, low resolution printing results in fused joints when the joint clearance is intended to be very small. Various 3D printers are capable of print resolutions of up to 600dpi (dots per inch) as quoted in their datasheets. Although the above quoted level of detail can satisfy the micro-structure needs of a large set of biological/mechanical models under investigation, it is important to include the ability of a 3D slicing application to check that the printer can properly produce the feature with the smallest detail in a model. A way to perform this check would be the physical measurement of printed parts and comparison to expected results. Our work includes a method for using ray casting to detect features in the 3D CAD models whose sizes are below the minimum allowed by the printer resolution. The resolution validation method is tested using a few simple and complex 3D models. Our proposed method serves two purposes: (a) to assist CAD model designers in developing models whose printability is assured. This is achieved by warning or preventing the designer when they are about to perform shape operations that will lead to regions/features with sizes lower than that of the printer resolution; (b) to validate slicing outputs before generation of G-Codes to identify regions/features with sizes lower than the printer resolution.

Page generated in 0.2084 seconds