• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 44
  • 33
  • 33
  • 17
  • 13
  • 12
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Study on the machinability and surface integrity of Ti6Al4V produced by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) processes / Pas de titre fourni

Milton, Samuel 28 May 2018 (has links)
Les technologies de fabrication additive(FA) basées sur la technique de fusion laser sur lit de poudres, telles que les procédés de fusion sélective laser (Selective Laser Melting ‘SLM’) et de fusion par faisceau d'électrons (Electron Beam Melting ‘EBM’), ne cessent de se développer afin de produire des pièces fonctionnelles principalement dans les domaines aérospatial et médical. Le procédé de fabrication additive offre de nombreux avantages, tels que la liberté de conception, la réduction des étapes de fabrication, la réduction de la matière utilisée, et la réduction de l'empreinte carbone lors de la fabrication d'un composant. Néanmoins, les pièces obtenues nécessitent une opération d’usinage de finition afin de satisfaire les tolérances dimensionnelles et l’état de surface. / Additive Manufacturing (AM) techniques based on powder bed fusion like Selective Laser Melting(SLM) and Electron Beam Melting processes(EBM) are being developed to make fully functional parts mainly in aerospace and medical sectors. There are several advantages of using AM processes like design freedom, reduced process steps, minimal material usage and reduced carbon footprint while producing a component. Nevertheless, the parts are built with near net shape and then finish machined to meet the demands of surface quality and dimensional tolerance.
12

XCT analysis of the defect distribution and its effect on the static and dynamic mechanical properties in Ti-6Al-4V components manufactured by electron beam additive manufacture

Tammas-Williams, Samuel January 2016 (has links)
Selective electron beam melting (SEBM) is a promising powder bed Additive Manufacturing technique for near-net-shape manufacture of high-value titanium components. An extensive research program has been carried out to characterise in 3D the size, volume fraction, and spatial distribution of the pores in model samples, using X-ray computed tomography (XCT), and correlate them to the SEBM process variables. The average volume fraction of the pores (97.5 %) where fatigue cracks would initiate based on the relative stress intensity factor of all the pores. In contrast, crack growth was found to be insensitive to porosity, which was attributed to the much higher stress concentration generated by the crack in comparison to the pores. Some crack diversion was associated with the local microstructure, with prior β grain boundaries often coincident with crack diversion.
13

Defektidentifieringvid EBM-tillverkning

Brochs, Christoffer January 2018 (has links)
Tillverkning av slutprodukter med additiv tillverkning   blir allt vanligare. Slutprodukter har högre krav på detaljens mekaniska   egenskaper än prototyper gör. Forskning har visat att porositeten är av stor   betydelse för en detaljs hållfasthet. Med additiv tillverkning finns goda   möjligheter för direkt processövervakning och kontrollsystem. Inom electron   beam melting finns sådana system men de saknas en validering av resultatet   från dom systemen. I de här arbetet har prover med designade defekter   tillverkats. LayerQam bilder från tillverkningen har analyserats med Defect   Detector. Data från analysen har visualiserats. Resultatet har studerats samt   att det har tagits fram en Defect Detector-analys med högre precision.   Utvalda prover har undersökts i ett tvärsnitt med optisk mikroskopi samt i 3D   med mikrotomografi. Undersökningarna har jämförts med varandra, de tyder på   att Defect Detector har brister i sin bedömning av densiteten. De designade   defekterna har en överskattad storlek samt brister i kompensation av   förvrängningen i synfältet i bilderna. / <p>Betyg: 180827</p>
14

Effect of Process Parameters on Contour Properties in Inconel 718 Structures Fabricated by Electron Beam Melting

Vaidyalingam Arumugam, Karthik January 2019 (has links)
Additive Manufacturing (AM), commonly known as 3D printing is a production method that utilises repeated addition of layers in order to produce a final shape. AM utilises less raw material and does not have drawbacks such as tool wear and material wastage as seen in conventional machining. However, they do have drawbacks such as poor surface and internal defects.  A common practice in AM is the fabrication of contour and bulk region using separate parameters.  The aim of this project was to study the effects of various process parameters on the contour properties. The process parameters considered were scanning speed, beam current and focus offset. The Nickel alloy Inconel 718 was utilised in Electron Beam Melting (EBM) to fabricate the test specimen. The samples used in this project were in an as-built condition which was priorly subjected to tensile testing for a different project. The tests performed in this project are hardness testing and microstructural investigation about grains, precipitates and the various defects.  The test results helped to understand the effect of various process parameters on the hardness and microstructure of the samples. The samples with lower scanning speed had higher hardness and lesser lack of fusion than samples with higher speed. In the case of varying beam current, the samples with higher beam current had higher hardness values and fewer lack of fusions. Similarly, the effects of varying two or more process parameters were also studied and their findings recorded. The microstructure consisted of a large number of shrinkage porosities in the bulk and contour regions. The presence of Niobium rich precipitates at grain boundaries and the grain structure for various process parameters were identified and recorded.
15

Development of a Data Transformation Method for a Customized Stent usingAdditive Manufacturing

Tepe, Julius January 2018 (has links)
Conventionally manufactured stents are available in uniform sizes and straight forms. These standard products are not suitable for all patients and research indicates that this is the reason for migration of stents in the vessel, and tubular structure in general, after deployment. The occurrence of migration makes readmission into hospital and the removal of the deployed stent necessary. This thesis develops a method which results in patient-customized stents which can be manufactured through additive manufacturing. These individualized stents intent to offer the same advantages of conventional stents while mitigating the disadvantages. The work’s core part is thedesign of a stent based on the geometric information through a medical scan. It converts the relevant areas from the medical scan data which is in the DICOM format to the STL file format. After cleaning and further processing, the shape will be the base for the design process of a stent using CAD software. Additionally, it also gives insight into the subjacent technologies such as medical scanning, additive manufacturing, choice of material and necessary further processing steps. A process chain from scanning, data transformation, 3D printing and post processing is described.The developed method delivers a reliable model and results in a fully individualized stent. In the current stage, it involves manual work since the representation of data in the steps is different. Further suggestions for steps to automate the process and an estimation of economic efficiency is given. / Det finns konventionellt tillverkade stenter i likformiga storlekar och raka former. Dem här standardprodukter är inte lämpliga för alla patienter och forskning tyder på att detta är orsaken till migrationen av stenter i blodkärl efter placering. Förekomsten av migration skapa återtagande på sjukhus och avlägsnande av den placerade stenten är nödvändig. Den här avhandlingen utvecklar en metod som resulterar i patient anpassade stenter som kan varatillverkad genom additiv tillverkning. Dessa individualiserade stenter avser att erbjuda samma fördelar som konventionella stenter och mildra nackdelarna. Arbetets kärna är designen av en stent baserad på den geometriska informationen baserande på en medicinsk bildteknik. Det omvandlar relevanta kroppsdelar från det medicinska bildteknik som finns i DICOM-formatet till STLfilformatet. Efter rengöring och vidare bearbetning kommer formen att vara basen för stentens designprocess med CAD-mjukvara. Dessutom ger den också inblick i de underliggande teknikerna som medicinsk bildteknik, tillsatsframställning, materialval och nödvändig vidarebehandling steg. En processkedja från skanning, datatransformation, 3D-utskrift och efterbehandling är beskrivits.Den utvecklade metoden ger en tillförlitlig modell och resulterar i en helt individualiserad stent. I det aktuellt stadium, innebär det manuellt arbete eftersom representationen av data i stegen är annorlunda. Ytterligare förslag till åtgärder för att automatisera processen och en uppskattning av ekonomisk effektivitet är given.
16

Effect of Beam Scan Length on Microstructure Characteristics of EBM Manufactured Alloy 718

Gustavsson, Bengt January 2018 (has links)
Additive Manufacturing (AM) as a method is on the rise and allow for a high freedom to create unique shapes without being limited by conventional machining methods. The Electron Beam Melting method, developed by Arcam AB in Mölndal, Sweden, use Powder Bed Fusion together with an electron beam and at an elevated temperature (+1000ºC) to lower stress due to thermal gradients. The purpose of this paper is to study the influence of Scan Length during Electron Beam Melting of Alloy 718 in regards to the appearance of shrinkage, porosity, primary carbide precipitation (mainly NbC), primary dendrite width and hardness. Samples built had the dimensions of 10x15xVar mm3 (Height x Depth x Width) with widths ranging from 10 mm in steps of 5 mm up to a maximum of 90 mm. The parameters were set as a single entry within the build project and as such each layer was melted as a single unit. A Light-Optical Microscope (LOM) and a Scanning Electron Microscope (SEM) was used to obtain images for manual counting to calculate the fraction of porosity and NbC-precipitates as well as the columnar grain width. The space between lines of interdendritical precipitation of NbC was used to determine the dendrite arm widths and a series of Hardness Vickers (500g for 15s) indents was performed. An Energy-Dispersive X-Ray Spectroscope (EDS) was used to help identify precipitates and phases. Columnar grain width and the spacing between vertical bands of interdendritical NbC was measured according to ASTM112-13 while porosity and hardness was measured according to ASTM562-11. Both of these only looked at the XZ-plane instead of all three planes. The columnar grain width was measured in the 10 mm, 40 mm and 90 mm samples at a distance of 4 mm from the top and with a slight spread over the sample width according to ASTM112-13 but using only one plane for counting. No significant change to columnar width was found. Primary dendrite arm width was measured on the 10 mm, 40 mm and 90 mm samples at about 5 mm from the top. An average for all samples was found to be 7.82 μm ± 2.89. No significant trend could be found with increased sample width. A total average porosity of 0.33% ± 0.16 was found. Variations between samples were less than the standard deviation. Even though the variations were not high enough to be significant, no obvious trend could be seen in regards to sample width, position on the base plate or heat transfer through the build. The presence of NbC was investigated in all samples with a total average of 0.36% ± 0.23 with variations between sample lengths being within the standard deviation. An insignificant trend could be seen between the smaller samples together with the wider samples having a higher degree of NbC compared to the middle samples. No significant trend could be seen in NbC based on row. Across all samples, the mean hardness was found to be 406.75 HV0.5 ± 16.53. No significant trend could be seen with increased sample width. Based on sample rows no significant trend could be seen.
17

Wear behavior of Ti-6Al-4V for Joint Implants manufactured by Electron Beam Melting

Shrestha, Sanjay 25 May 2017 (has links)
No description available.
18

Independent Project in Chemical Engineering and Materials Engineering : A literature study of powder-based additive manufacturing

Feldt, Daniel, Hedberg, Petra, Jarlöv, Asker, Persson, Elsa, Svensson, Mikael, Vennberg, Filippa, You, Therese January 2018 (has links)
The focus of this literary study was additive manufacturing (AM) and the purpose was to find general trends for selected materials that have been additively manufactured and compare them to results from other reviews. The raw materials studied were stainless steels 316L, 17-4 PH, 15-5 PH and 420, as well as tool steel H13 and nickel alloys 625, 718 and Hastelloy X.The AM techniques studied were selective laser melting (SLM), electron beam melting (EBM) and binder jetting (BJG).  A total of 69 articles have been studied to fulfill the purpose above. The articles were used to write a summary of the techniques, compare them to each other and to conventional methods. They were also used to create a database to compile information on mechanical properties, microstructure and process parameters. Based on the database mechanical properties for SLM tend to be higher compared to EBM. This however varied somewhat depending on the processed material. Furthermore the yield and tensile strength obtained from the database for SLM seemed to be higher compared to the values in review articles for almost all materials. Unfortunately not enough values were found for BJG to compare it to SLM and EBM.AM seems to produce weaker, equal and superior products compared to conventional methods. However due to the limited nature of the project and the research found no conclusions can be drawn about any trends, how to achieve the different results or how parameters affect the finished product. To be able to say anything with more certainty more research has to be done. Not only in general concerning the AM techniques, but more studying of existing articles is needed. Finally a standardization on how to reference properties and process parameters is necessary. Currently it is very difficult to compare results or draw conclusions due to different designations, units and a lot of missing essential information.
19

Independent Project in Chemical Engineering and Materials Engineering : A literature study of powder-based additive manufacturing

Feldt, Daniel, Hedberg, Petra, Jarlöv, Asker, Persson, Elsa, Svensson, Mikael, Vennberg, Filippa, You, Therese January 2018 (has links)
The focus of this literary study was additive manufacturing (AM) and the purpose was to find general trends for selected materials that have been additively manufactured and compare them to results from other reviews. The raw materials studied were stainless steels 316L, 17-4 PH, 15-5 PH and 420, as well as tool steel H13 and nickel alloys 625, 718 and Hastelloy X. The AM techniques studied were selective laser melting (SLM), electron beam melting (EBM) and binder jetting (BJG).  A total of 69 articles have been studied to fulfill the purpose above. The articles were used to write a summary of the techniques, compare them to each other and to conventional methods. They were also used to create a database to compile information on mechanical properties, microstructure and process parameters. Based on the database mechanical properties for SLM tend to be higher compared to EBM. This however varied somewhat depending on the processed material. Furthermore the yield and tensile strength obtained from the database for SLM seemed to be higher compared to the values in review articles for almost all materials. Unfortunately not enough values were found for BJG to compare it to SLM and EBM.AM seems to produce weaker, equal and superior products compared to conventional methods. However due to the limited nature of the project and the research found no conclusions can be drawn about any trends, how to achieve the different results or how parameters affect the finished product. To be able to say anything with more certainty more research has to be done. Not only in general concerning the AM techniques, but more studying of existing articles is needed. Finally a standardization on how to reference properties and process parameters is necessary. Currently it is very difficult to compare results or draw conclusions due to different designations, units and a lot of missing essential information.
20

Modélisation avancée de formes complexes de pièces mécaniques pour lesprocédés de fabrication additive / Advanced modeling of complex mechanical structures for additive manufacturing

Chougrani, Laurent 14 December 2017 (has links)
Les procédés de fabrication additive ont connus un fort essor dans les dernières décennies et entament aujourd'hui leur phase d'industrialisation pérenne. L'industrie, dans un souci d'améliorer sans cesse le ratio masse/rigidité des systèmes qu'elle produit (notamment l'industrie aéronautique), a pris conscience du potentiel de ces technologies à produire des structures plus complexes que les procédés classiques. Elle cherche aujourd'hui à tirer profit de ce potentiel pour alléger encore plus les pièces produites en utilisant notamment des géométries de type réseaux ou alvéolaires (Lattice en anglais). Les travaux présentés dans ce manuscrit ont pour but de proposer une méthodologie, des modèles et des outils permettant la conception, le dimensionnement et l'optimisation de telles structures en vue de leur fabrication par procédés additifs. Le framework proposé peut être résumé par les huit étapes ci-dessous:- Importation de l'espace de conception, comprenant également les cas de chargement.- Optimisation topologique sur l'espace de conception.- Reconstruction de la géométrie, appelée primitive, qui servira de support à l'insertion du réseau.- Calcul par éléments finis qui peut être réalisé pour s'assurer de la bonne tenue mécanique.- Définition de la topologie du réseau, par l'intermédiaire d'un graphe 3D.- Déformation du réseau et optimisation mécanique du réseau.- Reconstruction des volumes.- Préparation des fichiers de données et impression 3D. / Additive manufacturing processes have been quickly growing those past decades and are now getting to their sustainable industrial. Industry has been caring about the mass to rigidity ratio of the structures it produces (especially in aeronautics), and is now acknowledging the potential of additive processes to produce more complex shapes than classical processes. Industry is now trying to take advantage of this potential by designing highly complex structures like lattices or metal foams. The work that is presented in this document propose a methodology, models and numerical tools allowing the conception, dimensioning and optimization of such structures through additive manufacturing. The proposed framework can be describe through the height following steps:- Importing the design space and the technical requirement (load cases).- Topology optimization of the design space- Geometry reconstruction to create a primitive which will be the lattice insertion area.- Finite elements computation to ensure that the structure meets the requirements.- Lattice topology definition using 3D graphs.- Lattice deformation and optimization.- Creation of the volumes around the lattice.- Printing file creation and 3D printing.

Page generated in 0.1094 seconds