• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Proton structure functions at low Q'2

Tickner, James January 1997 (has links)
No description available.
2

A Measurement of the Proton's Weak Charge Using an Integration Cerenkov Detector System

Wang, Peiqing 02 September 2011 (has links)
The Q-weak experiment at Thomas Jefferson National Accelerator Facility (USA) will make a precision determination of the proton weak charge with approximately 4% combined statistical and systematic uncertainties via a measurement of the parity violating asymmetry in elastic electron-proton scattering at very low momentum transfer and forward angle. This will allow an extraction of the weak mixing angle at Q^2=0.026 (GeV/c)^2 to approximately 0.3%. The weak mixing angle is a fundamental parameter in the Standard Model of electroweak interactions. At the proposed accuracy, a measured deviation of this parameter from the predicted value would indicate new physics beyond what is currently described in the Standard Model. Without deviation from the predicted value, this measurement would place stringent limits on possible extensions to the Standard Model and constitute the most precise measurement of the proton's weak charge to date. The key experimental apparatus include a liquid hydrogen target, a toroidal magnetic spectrometer and a set of eight Cerenkov detectors. The Cerenkov detectors form the main detector system for the Q-weak experiment and are used to measure the parity violating asymmetry during the primary Q-weak production runs. The Cerenkov detectors form the main subject of this thesis. Following a brief introduction to the experiment, the design, development, construction, installation, and testing of this detector system will be discussed in detail. This is followed by a detailed discussion of detector diagnostic data analysis and the corresponding detector performance. The experiment has been successfully constructed and commissioned, and is currently taking data. The thesis will conclude with a discussion of the preliminary analysis of a small portion of the liquid hydrogen data.
3

A Measurement of the Proton's Weak Charge Using an Integration Cerenkov Detector System

Wang, Peiqing 02 September 2011 (has links)
The Q-weak experiment at Thomas Jefferson National Accelerator Facility (USA) will make a precision determination of the proton weak charge with approximately 4% combined statistical and systematic uncertainties via a measurement of the parity violating asymmetry in elastic electron-proton scattering at very low momentum transfer and forward angle. This will allow an extraction of the weak mixing angle at Q^2=0.026 (GeV/c)^2 to approximately 0.3%. The weak mixing angle is a fundamental parameter in the Standard Model of electroweak interactions. At the proposed accuracy, a measured deviation of this parameter from the predicted value would indicate new physics beyond what is currently described in the Standard Model. Without deviation from the predicted value, this measurement would place stringent limits on possible extensions to the Standard Model and constitute the most precise measurement of the proton's weak charge to date. The key experimental apparatus include a liquid hydrogen target, a toroidal magnetic spectrometer and a set of eight Cerenkov detectors. The Cerenkov detectors form the main detector system for the Q-weak experiment and are used to measure the parity violating asymmetry during the primary Q-weak production runs. The Cerenkov detectors form the main subject of this thesis. Following a brief introduction to the experiment, the design, development, construction, installation, and testing of this detector system will be discussed in detail. This is followed by a detailed discussion of detector diagnostic data analysis and the corresponding detector performance. The experiment has been successfully constructed and commissioned, and is currently taking data. The thesis will conclude with a discussion of the preliminary analysis of a small portion of the liquid hydrogen data.
4

Messung der polarisierten Strukturfunktion g1(x, Q 2) des Protons mit dem HERMES-Experiment

Hasch, Delia 04 June 1999 (has links)
Die vorliegende Arbeit beschreibt die Messung der polarisierten Strukturfunktion g1p des Protons in der polarisationsabh"angigen tief inelastischen Positron-Proton-Streuung bei einer Schwerpunktenergie von 7.5 GeV. Die Analyse umfasst die 1997 mit dem Hermes-Experiment am Hera-Positronring aufgezeichneten Daten der Streuung polarisierter Positronen der Energie 27.6 GeV an einem polarisierten Wasserstofftarget. Aus den Z"ahlraten der inklusiv nachgewiesenen, selektierten Positronen f"ur die parallele und die antiparallele Ausrichtung der Spinvektoren von Strahlteilchen und Targetatomen wurde die Streuquerschnitts- Asymmetrie der Positron-Proton-Streuung bestimmt. In verschiedenen Korrekturverfahren wurden Untergrundprozesse, Spektrometereinfl"usse sowie Strahlungskorrekturen ber"ucksichtigt. Die Untergrundkorrekturen wurden aus den Daten, die Spektrometerkorrekturen aus einer Monte-Carlo- Simulation ermittelt. Die Abh"angigkeit der Monte-Carlo- und Strahlungskorrekturen von der gew"ahlten Modell-Asymmetrie zur Beschreibung der polarisationsabh"angigen Effekte wurde durch die Anwendung eines iterativen Verfahrens minimiert. Aus der vollst"andig korrigierten Streuquerschnitts-Asymmetrie wurde die Asymmetrie g1/F1 im kinematischen Bereich 0.021 < x < 0.85 und Q2 > 0.8 GeV^2 mit einer systematischen Unsicherheit von etwa 8% bei einer statistischen Genauigkeit von 6% bis 20%, ansteigend f"ur abnehmende x-Werte, bestimmt. Die aus g1/F1 berechnete polarisierte Strukturfunktion g1p(x,Q2) wird, unter der Annahme einer von q2 unabh"angigen Asymmetry g1/F1, zu einem festen Wert Q2_0 entwickelt. Ihr erstes Moment im gemessenen x-Bereich betr"agt int_{0.021}^{0.85} dx g1p(x,Q2_0) = 0.122 =- 0.003 (stat) =- 0.010 (sys) at Q2_0 = 2.5 GeV^2. Der Vergleich mit den Werten des SMC-Experimentes am CERN und des E143-Experimentes am SLAC f"ur das erste Moment von g1p wurde unter Anwendung des gleichen Integrationsschemas f"ur den jeweils gemeinsam gemessenen x-Bereich sowie f"ur gleiche Q2_0 Werte durchgef"uhrt. Das Ergebnis der vorliegenden Analyse befindet sich, bezogen auf die statistische Genauigkeit der Messungen, in "Ubereinstimmung innerhalb von 0.6 bzw. 1.2 Standardabweichungen mit den Resultaten des E143- bzw. SMC-Experimentes. Durch Extrapolation der Strukturfunktion auf den gesamten x-Bereich [0,1] wird das erste Moment zu \int_{0}^{1} dx g1p(x,Q2_0) = 0.132 +- 0.003 (stat) +- 0.010 (sys) +- 0.006 (extr) bestimmt, wobei der zus"atzliche Fehler die Unsicherheit in der Extrapolation x -> 0 wiedergibt. Die Interpretation der vorliegenden Messung im Rahmen des Quark-Parton-Modells unter Ber"ucksichtigung von QCD-Korrekturen der Ordnung O(alphaS^3) ergibt einen Beitrag der Quarks zum Gesamtspin des Nukleons von (30 +- 10)% f"ur Q2_0 = 2.5 GeV^2. Dieses Ergebnis entspricht einer Abweichung von der Ellis-Jaffe-Vorhersage um 2.5 Standardabweichungen, bezogen auf den angegebenen Gesamtfehler, und f"uhrt im Kontext des Quark-Parton-Modells zur Interpretation negativ polarisierter Strange-Seequarks mit einem Beitrag von (-9 +- 4)% f"ur Q2_0 = 2.5 GeV^2. Von verschiedenen Gruppen werden aus QCD-Analysen unterschiedlicher Datens"atze Beitr"age der Quarks zum Nukleonspin von 19% bis 44% angegeben. Unter Hinzunahme der Hermes-Messung der polarisierten Neutronstrukturfunktion g1n wurde der Wert der fundamentalen Bjorken-Summenregel f"ur Q2_0 = 2.5 GeV^2 bestimmt. Dieser Wert befindet sich, bei einer auf den Gesamtfehler bezogenen Genauigkeit von 13%, innerhalb von 0.5 Standardabweichungen in "Ubereinstimmung mit der theoretischen Vorhersage, berechnet unter Ber"ucksichtigung von QCD-Korrekturen der Ordnung O(\alphaS^3). / The subject of this thesis is the measurement of the polarised structure function g1p of the proton in deeply inelastic positron-proton-scattering at a centre of mass energy of 7.5 GeV. The data used in the analysis were recorded during the 1997 running period of the Hermes experiment using a longitudinally nuclear polarised hydrogen target in the 27.6 GeV Hera polarised positron storage ring. The cross section asymmetry of positron-proton-scattering has been measured by counting the number of inclusively reconstructed and selected positrons with target spin vector parallel or antiparallel to the beam spin direction. Background processes, spectrometer effects, and radiative corrections have been taken into account by applying different correction procedures. Here background corrections were determined from data while spectrometer corrections were computed from Monte Carlo simulation. The dependence of Monte Carlo and radiative corrections on the model asymmetry chosen to describe polarisation dependent effects has been minimised by applying an iterative procedure. From the fully corrected cross section asymmetry the asymmetry g1/F1 has been computed in the kinematic region 0.021 < x < 0.85 and Q2 > 0.8 GeV^2 with a systematic uncertainty of 8% and a statistical accuracy of 6% to 20%, raising for decreasing x values. The polarised structure function g1p(x,Q2), determined from the asymmetry g1/F1 , was evoluted to a common Q2_0 value assuming g1/F1 to be independent of Q2. Its first moment evaluated in the measured x region is int_{0.021}^{0.85} dx g1p(x,Q2_0) = 0.122 =- 0.003 (stat) =- 0.010 (sys) at Q2_0 = 2.5 GeV^2. This result has been compared with those from E143 at SLAC and from SMC at CERN, both calculated with the same integration scheme and for the kinematic range of Hermes. With respect to the statistical uncertainties the agreement is better than 0.6 and 1.2 standard deviations, respectively. Extrapolation over the entire x range [0,1] yield for the first moment\int_{0}^{1} dx g1p(x,Q2_0) = 0.132 +- 0.003 (stat) +- 0.010 (sys) +- 0.006 (extr) where the additional error gives the uncertainty in the extrapolation x -> 0. The interpretation of this measurement in the framework of the quark parton model taking QCD corrections of the order O(alphaS^3) into account results in a contribution of the quarks to the total nucleon spin of (30 +- 10)% at Q2_0 = 2.5 GeV^2. This result corresponds to a deviation from the Ellis-Jaffe prediction by 2.5 standard deviation regarding the given total uncertainty. Within the quark parton model the deviation can be interpreted as negative polarisation of the strange sea quarks with a contribution of (-9 +- 4)% at Q2_0 = 2.5 GeV^2. Different groups give contributions of the quarks to the nucleon spin of 19% to 44% which were obtained from QCD analyses of various data sets. The fundamental Bjorken sum rule has been determined at Q2_0 = 2.5 GeV^2 using the Hermes measurement of the polarised neutron structure function g1n. With respect to the experimental accuracy of 13 %, the result agrees within 0.5 standard deviation with the theoretical prediction taking QCD corrections of the order O(alphaS^3) into account.

Page generated in 0.1147 seconds