• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 2
  • 2
  • 2
  • Tagged with
  • 23
  • 23
  • 23
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Single and many-band effects in electron transport and energy relaxation in semiconductors /

Prunnila, Mika. January 1900 (has links) (PDF)
Thesis (doctoral)--Helsinki University of Technology, 2007. / Includes bibliographical references. Also available on the World Wide Web.
12

Theoretical characterization of charge transport in organic molecular crystals

Sánchez-Carrera, Roel S. January 2008 (has links)
Thesis (Ph. D.)--Chemistry and Biochemistry, Georgia Institute of Technology, 2009. / Committee Chair: Brédas, Jean-Luc; Committee Member: Kippelen, Bernard; Committee Member: Marder, Seth; Committee Member: Sherrill, David; Committee Member: Whetten, Robert. Part of the SMARTech Electronic Thesis and Dissertation Collection.
13

Nanoscale heat transfer in argon-like solids via molecular dynamics simuations

Tian, Zhiting. January 2009 (has links)
Thesis (M.S.)--State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science, Department of Mechanical Engineering, 2009.. / Includes bibliographical references.
14

Investigation of order parameters and critical coupling for the Peierls Extended Hubbard Model at one-quarter filling

Hardikar, Rahul Padmakar, January 2004 (has links)
Thesis (M.S.) -- Mississippi State University. Department of Physics and Astronomy. / Title from title screen. Includes bibliographical references.
15

Resonant inelastic X-ray scattering as a probe of exciton-phonon coupling / Diffusion inélastique résonante de rayons X en tant que sonde du couplage excitonphonon

Geondzhian, Andrey 11 December 2018 (has links)
Les phonons contribuent à la diffusion inélastique résonante des rayons X (RIXS) du fait du couplage entre les degrés de liberté électronique et ceux du réseau. Contrairement à d'autres techniques sensibles aux interactions électron-phonon, la technique RIXS peut donner accès aux constantes de couplage dépendantes du moment. Des informations sur la dispersion de l'interaction électron-phonon sont très précieuses dans le contexte de la supraconductivité anisotrope conventionnelle et non conventionnelle.Nous avons considéré la contribution des phonons sur la diffusion RIXS d’un point de vue théorique. Contrairement aux études précédentes nous soulignons le rôle du couplage du réseau avec les trous de cœur. Notre modèle, avec les paramètres obtenus ab-initio, montre que même dans le cas d'un trou de coeur profond, la technique RIXS sonde le couplage exciton-phonon plutôt qu’un couplage direct électron-phonon.Cette différence conduit à des écarts quantitatifs et qualitatifs pour le couplage électron-phonon implicite par rapport à l'interprétation standard dans la littérature. Ainsi, notre objectif est de développer une approche rigoureuse pour quantifier le couplage électron-phonon dans le contexte des mesures de diffusion RIXS. La possibilité de reproduire avec précision les résultats expérimentaux à partir des calculs ab-initio, sans recourir à des paramètres ajustés, doit être considérée comme le test ultime d'une compréhension correcte de la contribution des phonons sur la diffusion RIXS.Nous commençons notre travail en considérant uniquement l’interaction trou de coeur-phonon dans le contexte de la spectroscopie par photoémission de rayons X. Nous combinons un calcul ab-initio de la fonction de réponse en espace réel avec des techniques de fonctions de Green à plusieurs corps pour reproduire les bandes latérales vibrationnelles dans les molécules SiX4 (X = H, F). L'approche que nous avons développée peut être appliquée aux matériaux cristallins.Nous examinons ensuite la contribution des phonons aux spectres d'absorption des rayons X. Contrairement aux excitations chargées générées par la photoémission par rayons X, l'absorption des rayons X crée une excitation neutre que nous approchons en tant que trou de cœur et électron excité. Nous résolvons d’abord la partie électronique du problème au niveau de l’équation de Bethe-Salpeter, puis nous habillons la quasi-particule excitonique à 2 particules résultante avec les interactions exciton-phonon en utilisant l’Ansatz des cumulants. La viabilité de cette méthode a été testée en calculant le seuil K XAS de la molécule N2 et le seuil K d’Oxygène de l’acétone. Les spectres vibrationnels obtenus concordent avec les résultats expérimentaux.Enfin, nous construisons une formulation hybride de la section transversale RIXS qui préserve la sommation explicite sur un petit nombre d'états finals, mais remplace la sommation sur les états intermédiaires, ce qui pourrait être extrêmement coûteux, par une fonction de Green. Nous avons obtenu un développement de la fonction de Green et dérivé des solutions analytiques exactes (dans la limite de non-recul) et approximatives. Le formalisme a de nouveau été testé sur le seuil K de l'acétone et est bien en accord avec l'expérience. En perspectives des travaux futurs, nous discutons de l’applicabilité de notre formalisme aux matériaux cristallins. / Phonons contribute to resonant inelastic X-ray scattering (RIXS) as a consequence of the coupling between electronic and lattice degrees of freedom. Unlike other techniques that are sensitive to electron-phonon interactions, RIXS can give access to momentum dependent coupling constants. Information about the dispersion of the electron-phonon interaction is highly desirable in the context of understanding anisotropic conventional and unconventional superconductivity.We considered the phonon contribution to RIXS from the theoretical point of view. In contrast to previous studies, we emphasize the role of the core-hole lattice coupling. Our model, with parameters obtained from first principles, shows that even in the case of a deep core-hole, RIXS probes exciton-phonon coupling rather than a direct electron-phonon coupling.This difference leads to quantitative and qualitative deviations from the interpretation of the implied electron-phonon coupling from the standard view expressed in the literature. Thus, our objective is to develop a rigorous approach to quantify electron-phonon coupling within the context of RIXS measurements. The ability to accurately reproduce experimental results from first-principles calculations, without recourse to adjustable parameters, should be viewed as the ultimate test of a proper understanding of the phonon contribution to RIXS.We start by considering only the core-hole--phonon interaction within the context of X-ray photoemission spectroscopy. We combine an ab initio calculation of the real-space response function with many-body Green's functions techniques to reproduce the vibrational side-bands in SiX4 (X=H, F) molecules. The approach we developed is suitable for application to crystalline materials.We next consider the phonon contribution to X-ray absorption spectra. Unlike the charged excitations generated by X-ray photoemission, X-ray absorption creates a neutral excitation that we approximate as a core-hole and an excited electron. We first solved the electronic part of the problem on the level of the Bethe-Salpeter equation and then dressed the resulting 2-particle excitonic quasiparticle with the exciton-phonon interactions using the cumulant ansatz. The viability of this methodology was tested by calculating the N K-edge XAS of the N2 molecule and the O K-edge of acetone. The resulting vibronic spectra agreed favorably with experimental results.Finally, we construct a hybrid formulation of the RIXS cross section that preserves explicit summation over a small number of final states, but replaces the summation over intermediate states, which might be enormously expensive, with a Green's function. We develop an expansion of the Green's function and derive both analytically exact (in the no-recoil limit) and approximate solutions. The formalism was again tested on the O K-edge of acetone and agrees well with the experiment. To provide an outlook towards future work, we discuss application of the developed formalism to crystalline materials.
16

Dynamic electron-phonon interactions in one-dimensional models

Hardikar, Rahul Padmakar, January 2007 (has links)
Thesis (Ph.D.)--Mississippi State University. Department of Physics and Astronomy. / Title from title screen. Includes bibliographical references.
17

Theoretical description of charge-transport and charge-generation parameters in single-component and bimolecular charge-transfer organic semiconductors

Fonari, Alexandr 07 January 2016 (has links)
In this dissertation, we employ a number of computational methods, including Ab Initio, Density Functional Theory, and Molecular Dynamics simulations to investigate key microscopic parameters that govern charge-transport and charge-generation in single-component and bimolecular charge-transfer organic semiconductors. First, electronic (transfer integrals, bandwidths, effective masses) and electron-phonon couplings of single-component organic semiconductors are discussed. In particular, we evaluate microscopic charge-transport parameters in a series of nonlinear acenes with extended pi-conjugated cores. Our studies suggest that high charge-carrier mobilities are expected in these materials, since large electronic couplings are obtained and the formation of self-localized polarons due to local and nonlocal electron-phonon couplings is unlikely. Next, we evaluate charge detrapping due to interaction with intra-molecular crystal vibrations in order to explain changes in experimentally measured electric conductivity generated by pulse excitations in the IR region of a photoresistor based on pentacene/C60 thin film. Here, we directly relate the nonlocal electron-phonon coupling constants with variations in photoconductivity. In terms of charge-generation from an excited manifold, we evaluate the modulation of the state couplings between singlet and triplet excited states due to crystal vibrations, in order to understand the effect of lattice vibrations on singlet fission in tetracene crystal. We find that the state coupling between localized singlet and correlated triplet states is much more strongly affected by the dynamical disorder due to lattice vibrations than the coupling between the charge-transfer singlet and triplet states. Next, the impact of Hartree-Fock exchange in the description of transport properties in crystalline organic semiconductors is discussed. Depending on the nature of the electronic coupling, transfer integrals and bandwidths can show a significant increase as a function of the amount of the Hartree-Fock exchange included in the functional. Similar trend is observed for lattice relaxation energy. It is also shown that the ratio between electronic coupling and lattice relaxation energy is practically independent of the amount of the Hartree-Fock exchange, making this quantity a good candidate for incorporation into tight-binding transport models. We also demonstrate that it is possible to find an amount of the Hartree-Fock exchange that recovers (quasi-particle) band structure obtained from a highly accurate G0W0 approach. Finally, a microscopic understanding of a phase transition in charge-carrier mobility from temperature independent to thermally activated in stilbene-tetrafluoro-tetracyanoquinodimethane crystal is provided.
18

Theoretical characterization of charge transport in organic molecular crystals

Sánchez-Carrera, Roel S. 25 August 2008 (has links)
In this thesis, a first-principles methodology to investigate the impact of electron-phonon interactions on the charge-carrier mobilities in organic molecular crystals has been developed. Well-known organic materials such as oligoacene and oligothienoacene derivatives were studied in detail. The nature of the intramolecular vibronic coupling in oligoacenes and oligothienoacenes was studied using an approach that combines high-resolution gas-phase photo-electron spectroscopy measurements with first-principles quantum-mechanical calculations. The electron interactions with optical phonons in oligoacene single crystals were investigated using both density functional theory and empirical force field methods. The low-frequency optical modes are found to play a significant role in dictating the temperature dependence of the charge-transport properties in the oligoacene crystals. The microscopic charge-transport parameters in the pentathienoacene, 1,4-diiodobenzene, and 2,6-diiodo-dithieno[3,2-<i>b</i>:2',3'-<i>d</i>]thiophene crystals were also investigated. It was found that the intrinsic charge transport properties in the pentathienoacene crystal might be higher than that in two benchmark high-mobility organic crystals, i.e., pentacene and sexithienyl. For 1,4-diiodobenzene crystal, a detailed quantum-mechanical study indicated that its high mobility is primarily associated with the iodine atoms. In the 2,6-diiododithieno[3,2-<i>b</i>:2',3'-<i>d</i>]thiophene crystal, the main source of electronic interactions were found along the π-stacking direction. For negatively charged carriers, the halogen-functionalized molecular crystals show a very large polaron binding energy, which suggests significantly low charge-transport mobility for electrons.
19

Band structure renormalization at finite temperatures from first principles

Rybin, Nikita 21 August 2023 (has links)
In dieser Doktorarbeit untersuchen wir den Einfluss von Elektron-Phonon-Wechselwirkungen (EPW) auf die Bandlueckenrenormierung in kristallinen Festkoerpern bei endlichen Temperaturen. Das Hauptziel besteht darin, den Einfluss der Kernbewegung und der thermischen Ausdehnung des Gitters auf die Bandstruktur in einer Vielzahl von Materialien zu quantifizieren. Zu diesem Zweck wird der Temperatureinfluss auf das EPW in harmonischen Naeherungen unter Verwendung der stochastischen Abtastmethode und vollstaendig anharmonisch durch Durchführung von ab initio Molekulardynamiksimulationen (aiMD). Die Bandluecke bei endlichen Temperaturen wird aus der thermodynamisch gemittelten Spektralfunktion extrahiert, die unter Verwendung der Bandentfaltungstechnik berechnet wird. Waehrend die Verwendung von aiMD bereits fuer Berechnungen von EPW verwendet wurde, wurde die Kombination von aiMD und Bandentfaltung zur Behandlung der Bandluecken renormalisierung erst kuerzlich verwendet. In dieser Doktorarbeit haben wir eine verbesserte Bandentfaltungstechnik verwendet, um die Berechnung effektiv zu verwalten. Diese verbesserte Methode enthaelt mehrere methodische Neuerungen, die dazu dienen, den Rechenaufwand zu verringern und das statistische Rauschen in den Endergebnissen zu minimieren. Die aktualisierte Methode wurde gruendlich bewertet, dokumentiert und mit einer benutzerfreundlichen Oberflaeche gestaltet. Wir praesentieren eine umfassende Untersuchung der numerischen Aspekte der thermodynamischen Mittelung, der Schaetzung von Fehlerbalken und der Bewertung der Konvergenz in Bezug auf die Groesse der Simulationssuperzelle. Unser etabliertes Protokoll ermoeglicht die Berechnung der Bandlückenrenormierung bei endlichen Temperaturen, was in guter Uebereinstimmung mit frueheren theoretischen Studien und experimentellen Daten steht. / In this thesis, we investigate the influence of electron-phonon interactions (EPI) on the band gap renormalization in crystalline solids at finite temperatures. The main goal is to identify the impact of the nuclear motion and the lattice thermal expansion on the band structure in a wide range of materials. For this purpose, the temperature influence on the EPI is calculated in the harmonic approximations by utilizing the stochastic sampling methodology and fully anharmonically, by performing ab initio molecular dynamics simulations (aiMD). The band gap at finite temperatures is extracted from the thermodynamically averaged spectral function, which is calculated using band-unfolding technique. While utilization of aiMD was already used for calculations of EPI the combination of aiMD and band-unfolding to treat the band gap renormalization was used only recently. In this thesis, we employed an improved band unfolding technique in order to effectively manage the calculations. This improved method incorporates several methodological innovations that serve to mitigate computational cost and minimize statistical noise in the final results. The updated method was thoroughly benchmarked, documented, and designed with a user-friendly interface. We present a comprehensive examination of the numerical aspects of thermodynamic averaging, the estimation of error bars, and the evaluation of convergence with respect to the size of the simulation supercell. Our established protocol enables the calculation of band gap renormalization at finite temperatures, which is in good agreement with prior theoretical studies and experimental data.
20

Propriétés optiques dans l'infrarouge des nanotubes de carbone et du graphène

Lapointe, François 03 1900 (has links)
Les nanotubes de carbone et le graphène sont des nanostructures de carbone hybridé en sp2 dont les propriétés électriques et optiques soulèvent un intérêt considérable pour la conception d’une nouvelle génération de dispositifs électroniques et de matériaux actifs optiquement. Or, de nombreux défis demeurent avant leur mise en œuvre dans des procédés industriels à grande échelle. La chimie des matériaux, et spécialement la fonctionnalisation covalente, est une avenue privilégiée afin de résoudre les difficultés reliées à la mise en œuvre de ces nanostructures. La fonctionnalisation covalente a néanmoins pour effet de perturber la structure cristalline des nanostructures de carbone sp2 et, par conséquent, d’affecter non seulement lesdites propriétés électriques, mais aussi les propriétés optiques en émanant. Il est donc primordial de caractériser les effets des défauts et du désordre dans le but d’en comprendre les conséquences, mais aussi potentiellement d’en exploiter les retombées. Cette thèse traite des propriétés optiques dans l’infrarouge des nanotubes de carbone et du graphène, avec pour but de comprendre et d’expliquer les mécanismes fondamentaux à l’origine de la réponse optique dans l’infrarouge des nanostructures de carbone sp2. Soumise à des règles de sélection strictes, la spectroscopie infrarouge permet de mesurer la conductivité en courant alternatif à haute fréquence des matériaux, dans une gamme d’énergie correspondant aux vibrations moléculaires, aux modes de phonons et aux excitations électroniques de faible énergie. Notre méthode expérimentale consiste donc à explorer un espace de paramètres défini par les trois axes que sont i. la dimensionnalité du matériau, ii. le potentiel chimique et iii. le niveau de désordre, ce qui nous permet de dégager les diverses contributions aux propriétés optiques dans l’infrarouge des nanostructures de carbone sp2. Dans un premier temps, nous nous intéressons à la spectroscopie infrarouge des nanotubes de carbone monoparois sous l’effet tout d’abord du dopage et ensuite du niveau de désordre. Premièrement, nous amendons l’origine couramment acceptée du spectre vibrationnel des nanotubes de carbone monoparois. Par des expériences de dopage chimique contrôlé, nous démontrons en effet que les anomalies dans lespectre apparaissent grâce à des interactions électron-phonon. Le modèle de la résonance de Fano procure une explication phénoménologique aux observations. Ensuite, nous établissons l’existence d’états localisés induits par la fonctionnalisation covalente, ce qui se traduit optiquement par l’apparition d’une bande de résonance de polaritons plasmons de surface (nanoantenne) participant au pic de conductivité dans le térahertz. Le dosage du désordre dans des films de nanotubes de carbone permet d’observer l’évolution de la résonance des nanoantennes. Nous concluons donc à une segmentation effective des nanotubes par les greffons. Enfin, nous montrons que le désordre active des modes de phonons normalement interdits par les règles de sélection de la spectroscopie infrarouge. Les collisions élastiques sur les défauts donnent ainsi accès à des modes ayant des vecteurs d’onde non nuls. Dans une deuxième partie, nous focalisons sur les propriétés du graphène. Tout d’abord, nous démontrons une méthode d’électrogreffage qui permet de fonctionnaliser rapidement et à haute densité le graphène sans égard au substrat. Par la suite, nous utilisons l’électrogreffage pour faire la preuve que le désordre active aussi des anomalies dépendantes du potentiel chimique dans le spectre vibrationnel du graphène monocouche, des attributs absents du spectre d’un échantillon non fonctionnalisé. Afin d’expliquer le phénomène, nous présentons une théorie basée sur l’interaction de transitions optiques intrabandes, de modes de phonons et de collisions élastiques. Nous terminons par l’étude du spectre infrarouge du graphène comportant des îlots de bicouches, pour lequel nous proposons de revoir la nature du mécanisme de couplage à l’œuvre à la lumière de nos découvertes concernant le graphène monocouche. / Carbon nanotubes and graphene are sp2 hybridized carbon nanostructures which electrical and optical properties raise considerable interest for the design of a new generation of electronic devices and optically active materials. However, many challenges remain before their implementation in industrial processes on a large scale. Materials chemistry, especially covalent functionalization, is a privileged avenue to resolve the difficulties related to the processing of these nanostructures. Covalent functionalization, however, disrupts the sp2 carbon nanostructures’ crystalline structure, and pertubs not only said electrical properties, but also the deriving optical properties. It is therefore essential to characterize the effects of defects and disorder in order to understand their consequences, but also to potentially exploit the benefits. This thesis deals with the optical properties in the infrared of carbon nanotubes and graphene, with the aim to understand and explain the fundamental mechanisms at the origin of the optical response in the infrared of sp2 carbon nanostructures. Subject to strict selection rules, infrared spectroscopy measures the high frequency AC conductivity of materials in an energy range corresponding to molecular vibrations, phonon modes and low energy electronic excitations. Our experimental method is therefore to explore a parameter space defined by the three axes that are i. the dimensionality of the material, ii. the chemical potential, and iii. the disorder level, which allows us to identify the various contributions to optical properties in the infrared of sp2 carbon nanostructures. At first, we focus on the infrared spectroscopy of single-walled carbon nanotubes as a function of doping and disorder level. We start by amending the commonly accepted origin of single-walled carbon nanotubes vibrational spectra. Using controlled chemical doping experiments, we show that the anomalies in the carbon nanotube spectra appear through electron-phonon interactions. The Fano resonance model provides a phenomenological explanation for the observations. Then, we establish the existence of localized states induced by covalent functionalization, which appear as a surface plasmon polariton resonance (nanoantenna) contributing to the terahertz conductivity peak. Control of the disorder level in carbon nanotube films allows us to observe the evolution of the nanoantenna resonance. We therefore conclude to an effective segmentation of the nanotubes by the grafts. Finally, we show that disorder activates phonon modes that are usually forbidden by infrared spectroscopy’s selection rules. Disorder-induced infrared activity originates from elastic collisions on defects that give access to phonon modes with non-zero wave vectors. In a second part, we focus on the properties of graphene. First, we demonstrate an electrografting method to rapidly functionalize graphene with high-density, regardless of the substrate. Subsequently, we use electrografting to show that disorder activates chemical potential dependent anomalies in the vibrational spectra of single-layer graphene. These anomalies are absent in the spectra of pristine samples. In order to explain this phenomenon, we present a theory based on the interaction of intraband optical transitions, phonon modes and elastic collisions. We conclude by studying the infrared spectra of graphene with bilayer islands, for which we propose to review the nature of the coupling mechanism in the light of our findings on single-layer graphene.

Page generated in 0.1186 seconds