• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modéliser la polarisation électronique par un continuum diélectrique intramoléculaire vers un champ de force polarisable pour la chimie bioorganique

Truchon, Jean-François January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
12

Towards quantum optics experiments with single flying electrons in a solid state system / L'expériences d'optique quantique avec un unique électron volant dans la matière condensée

Bautze, Tobias 19 December 2014 (has links)
Ce travail de thèse porte sur l’étude fondamentale de systèmes nano-électroniques,mesurés à très basse température. Nous avons réalisé des interféromètres électroniques àdeux chemins à partir d’électrons balistiques obtenus dans un gaz 2D d’électrons d’unehétéro-structure GaAs/AlGaAs. Nous montrons que la phase des électrons, et ainsileur état quantique,peut être contrôlée par des grilles électrostatiques. Ces dispositifsse révèlent être des candidats prometteurs pour la réalisation d’un qubit volant. Nousavons développé une simulation numérique évoluée d’un modèle de liaisons fortes à partirde transport quantique ballistique qui décrit toutes les découvertes expérimentales etnous apporte une connaissance approfondie sur les signatures expérimentales de cesdispositifs particuliers. Nous proposons des mesures complémentaires de ce système dequbit volants. Pour atteindre le but ultime, à savoir un qubit volant à un électron unique,nous avons assemblé la source à électron unique précédemment développée dans notreéquipe à un beam splitter électronique. Les électrons sont alors injectés depuis une boîtequantique à un train de boîte quantiques en mouvement. Ce potentiel électrostatique enmouvement est généré par des ondes acoustiques de surface créées par des transducteursinter-digités sur le substrat GaAs piézo-électrique. Nous avons étudié et optimisé chacunde ces composants fondamentaux nécessaires à la réalisation d’un beam splitter à électronunique et développé un procédé local et fiable de fabrication. Ce dispositif nous permet d’étudier les interactions électroniques pour des électrons isolés et pourra servir de basede mesure pour des expériences d’optique quantiques sur un système électronique del’état condensé. Enfin, nous avons développé un outil puissant de simulation du potentielélectrostatique à partir de la géométrie des grilles. Ceci permet d’optimiser la conceptiondes échantillons avant même leur réalisation. Nous proposons ainsi un prototype optimiséde beam splitter à électron unique. / This thesis contains the fundamental study of nano-electronic systems at cryogenictemperatures. We made use of ballistic electrons in a two-dimensional electron gasin a GaAs/AlGaAs heterostructure to form a real two-path electronic interferometerand showed how the phase of the electrons and hence their quantum state can becontrolled by means of electrostatic gates. The device represents a promising candidateof a flying qubit. We developed a sophisticated numerical tight-binding model based onballistic quantum transport, which reproduces all experimental findings and allows togain profound knowledge about the subtle experimental features of this particular device.We proposed further measurements with this flying qubit system. With the ultimate goalof building a single electron flying qubit, we combined the single electron source that hasbeen developed in our lab prior to this manuscript with an electronic beam splitter. Theelectrons are injected from static quantum dots into a train of moving quantum dots.This moving potential landscape is induced in the piezoelectric substrate of GaAs bysurface acoustic waves from interdigial transducers. We studied and optimized all keycomponents, which are necessary to build a single electron beam splitter and built up areliable local fabrication process. The device is capable of studying electron interactionson the single electron level and can serve as a measurement platform for quantum opticsexperiments in electronic solid state systems. Finally, we developed a powerful toolcapable of calculating the potential landscapes of any surface gate geometry, which canbe used as a fast feedback optimization tool for device design and proposed an optimizedprototype for the single electron beam splitter.
13

Elektrostatička svojstva atoma sumpora u derivatima tiosemikarbazida / Electrostatic properties of the sulfur atom in the thiosemicarbazide derivatives

Francuski Bojana 10 December 2015 (has links)
<p>U ovoj doktorskoj disertaciji izloženi su rezultati&nbsp;analize eksperimentalno i teorijski dobijene&nbsp;raspodele gustine naelektrisanja dva derivata&nbsp;tiosemikarbazida, 4-metil-3-tiosemikarbazida&nbsp;(MeTSC) i 4-metil-3-tiosemikarbazon 2-piridinformamida (TSC4). &nbsp;Analiza&nbsp;eksperimentalno dobijene gustine naelektrisanja je&nbsp;zasnovana&nbsp; na preciznim &nbsp;podacima dobijenim&nbsp;difrakcijom rendgenskog zračenja visoke&nbsp;rezolucije. Teorijska istraživanja bazirana su na&nbsp;teorijskim strukturnim faktorima dobijenim&nbsp;primenom programa CRYSAL09 polazeći od&nbsp;geometrije&nbsp; molekula određene nakon multipol&nbsp;utačnjavanja eksperimentalno dobijene gustine&nbsp;naelektrisanja. Za opisivanje eksperimentalne i&nbsp;teorijske ukupne elektronske gustine kori&scaron;ćen je&nbsp;Hansen-Coppens-ov multipol-model.&nbsp; Takođe je&nbsp;urađena i topolo&scaron;ka analizahemijskih veza i&nbsp;interakcija &nbsp;i ispitivana su elektrostatička svojstva&nbsp;atoma sumpora.</p><p>Analizom eksperimentalne gustine&nbsp;naelektrisanja kristalnih struktura MeTSC i TSC4&nbsp;uočeno je da deformaciona gustina slobodnih&nbsp;elektronskih parova S atoma ima &nbsp;oblik torusa, da&nbsp;je unutar njega raspodela elektronske gustine&nbsp;nehomogena i da položaj samog torusa može biti&nbsp;ortogonalan (SalTSC) ili pod uglom (MeTSC,&nbsp;<br />TSC4).&nbsp; Na osnovu raspodele deformacione&nbsp;gustine i elektrostatičkog potencijala, kao &nbsp;i na&nbsp;osnovu topolo&scaron;ke analize ukupne eksperimentalne&nbsp;gustine naelektrisanja &rho;<sub>ktv</sub>&nbsp; i njenog Laplasijana &nabla;<sup>2</sup>&rho;<sub>ktv</sub> zaključeno je da atom sumpora ima izrazitu&nbsp;fleksibilnost i sposobnost da prilagodi svoju&nbsp;elektronsku gustinu slobodnih elektronskih &nbsp;parova&nbsp;prostornom rasporedu donornih grupa koje&nbsp;učestvuju u interakcijama sa S akceptorom.&nbsp; U&nbsp;kristalnim strukturama MeTSC i TSC4 utvrđeno&nbsp;je da S atom istovremeno gradi četiri, odnosno&nbsp;prosečno &scaron;est međumolekulskih interakcija.</p><p>U cilju upotpunjavanja eksperimentalnih&nbsp;rezultata analizirana je teorijski dobijena gustina&nbsp;naelektrisanja oba molekula, a zatim su ispitivane&nbsp;karakteristike sumpora kao akceptora i to u&nbsp;sistemima različite složensti polazeći od&nbsp;izolovanih monomera, preko izdvojenih dimer do&nbsp;kristalnogokruženja. Ovom analizom je utvrđeno&nbsp;da se simultanim angažovanjem S atoma u vi&scaron;e&nbsp;interakcija ne umanjuje njegova akceptorska&nbsp;sposobnost.</p><p>Vodonične vezekoje uključuju S akceptor su&nbsp;ispitivane sa aspekta &nbsp;energijskih svojstava dimera&nbsp;koji suprisutni u MeTSCi TSC4, kaoi u dodatno&nbsp;konstruisanim&nbsp; sistemima&nbsp; MeTSC/MeOH&nbsp; i&nbsp;aceton/MeOH. Energijske&nbsp; karakteristike&nbsp; su&nbsp;proučavane u pogledu elektrostatičke energije&nbsp;interakcije (E<sub>es</sub>) i kohezione energije(E<sub>coh</sub>). Za&nbsp;<br />dva odabrana&nbsp; MeTSC/MeOH i aceton/MeOH&nbsp;sistema je primenjena metoda &nbsp;kuplovanih klastera&nbsp;kao&scaron;to&nbsp; je&nbsp;<em> ab initio</em>&nbsp; CCSD(T)&nbsp; metod.&nbsp; Za&nbsp;MeTSC/MeOH sistem je &nbsp;urađena potpuna&nbsp;optimizacija i za tako dobijenu ravnotežnu&nbsp;geometriju je izračunata energija sistema&nbsp;∆E<sub>CCSD(T),CBS</sub>.</p> / <p>In this dissertation the analysis of the experimental and theoretically obtained electron &nbsp;density of two derivatives of thiosemicarbasides, 4-methyl-3-thiosemicarbaside (MeTSC) and 4-methyl-3-thiosemikabazone 2-piridinformamide (TSC4) are presented.&nbsp; The analysis of experimentally obtained electron density is based on &nbsp;accurate X-ray diffraction data of high resolution. Theoretically calculated electron densities are obtained from periodic quantum mechanical calculation using CRYSTAL09 and the accurate structural parameters from high resolution X-ray&nbsp;experiment. For the description of the theoretical and experimental electron density the Hansen-Coppens multipol model was used. Further topological analysis of chemical bonds and interactions was performed in order to explain the electrostatic properties of sulfur.</p><p>In this work it has been observed that in the experimentally obtained electron density of the MeTSC and TSC4 crystal structures, the deformational electron density of sulfur free electron pairs forms a toroidal shape. Further, this torus is not homogeneously filled but shows pronounced local accumulations and its position can be either orthogonal (like in SalTSC) or tilted (MeTSC, TSC4). Based on the distribution of the&nbsp;deformational electron&nbsp; density and electrostatic potential, as well as the topological analysis of the total electron density &rho;<sub>ktv</sub> and its Laplasian &nabla;<sup>2</sup>&rho;<sub>ktv&nbsp;</sub>it can be concluded that the S atom has a remarkable flexibility and ability to adapt his deformation electron density of free electron pairs into toruses corresponding to the position of donor groups surrounding him. In the crystal structures of MeTSC and TSC4 it was determined that the S atom participates in four and six interactions, respectively.</p><p>In order to supplement&nbsp; the experimentally obtained results a theoretically calculated electron density of both molecules (MeTSC and TSC4) was performed and the properties of the S atom as a hydrogen acceptor have been studied. The analysis was &nbsp;performed on systems of various complexity, starting with isolated monomers, then on &nbsp;dimers and up to the whole crystal packing. From this work it has been concluded that &nbsp;the acceptor capabilities of the S atom are not diminished with the increasing number &nbsp;of interactions.&nbsp;&nbsp;&nbsp;&nbsp;</p><p>The hydrogen bonding involving thioureido S&nbsp;acceptor is also investigated in terms of the energetic properties of the MeTSC and TSC4 dimers existing in the crystal structure, and additional MeTSC/MeOH and acetone/MeOH systems. Energetic features were thoroughly studied through electrostatic interactions energies (E<sub>es</sub>) and &nbsp;cohesive energies (E<sub>coh</sub>). For two selected MeTSC/MeOH and acetone/MeOH systems an ab initio approach&nbsp;employing the coupled-cluster singles and doubles augmented by a perturbational correction for connected triple excitations (CCSD(T)) method were applied. Finaly, for MeTSC/MeOH system full geometry optimization was &nbsp;performed and for resulting equilibrium geometry the energy of the system (∆E<sub>CCSD(T),CBS</sub>) was calculated.</p>
14

Elektronen-Holographische Tomographie zur 3D-Abbildung von elektrostatischen Potentialen in Nanostrukturen / Electron Holographic Tomography for the 3D Mapping of Electrostatic Potentials in Nano-Structures

Wolf, Daniel 14 February 2011 (has links) (PDF)
Die Aufklärung der grundlegenden Struktur-Eigenschaft-Beziehung von Materialen auf der (Sub-)Nanometerskala benötigt eine leistungsfähige Transmissionselektronenmikroskopie. Dabei spielen insbesondere die durch die Nanostruktur hervorgerufenen intrinsischen elektrischen und magnetischen Feldverteilungen eine entscheidende Rolle. Die Elektronen-Holographische Tomographie (EHT), d.h. die Kombination von off-axis Elektronenholographie (EH) und Elektronentomographie (ET), bietet einen einzigartigen Zugang zu dieser Information, weil sie die quantitative 3D-Abbildung elektrostatischer Potentiale und magnetostatischer Vektorfelder bei einer Auflösung von wenigen (5-10) Nanometern ermöglicht. Für die Rekonstruktion des 3D-Potentials erfolgt zunächst die Aufzeichnung einer Kippserie von Hologrammen im Elektronenmikroskop. Durch die anschließende Rekonstruktion der Objektwelle aus jedem Hologramm liegt eine Amplituden- und eine Phasenkippserie vor. Die Phasenkippserie wird schließlich zur tomographischen 3D-Rekonstruktion des elektrostatischen Potentials verwendet. Im Rahmen dieser Arbeit wurde die EHT von einer manuell aufwendigen zu einer weitestgehend automatisierten Methode entwickelt. Die Automatisierung beinhaltet die Entwicklung des ersten Softwarepaketes zur computergestützten Aufzeichnung einer holographischen Kippserie (THOMAS). Verglichen mit rein manueller Vorgehensweise verkürzt sich mit THOMAS die Dauer für die Aufnahme einer holographischen Kippserie, bestehend aus Objekt- und Leerhologrammen, auf weniger als ein Drittel. Mittlerweile beträgt die Aufnahmezeit im Mittel etwa 2-3 Stunden. Auch die holographische Rekonstruktion und zugehörige Operationen zur Entfernung von Artefakten in den Phasenbildern ist durch entsprechende Prozeduren, welche für eine gesamte Kippserie in einem Schritt anwendbar sind, automatisiert. Zudem ermöglichen erst spezielle selbstentwickelte Ausrichtungsmethoden die exakte Verschiebungskorrektur von Kippserien der hier untersuchten stabförmigen Objekte (Nanodrähte, FIB-präparierte Nadeln). Für die tomographische Rekonstruktion wurde in dieser Arbeit die Simultane Iterative Rekonstruktionstechnik (SIRT) zur W-SIRT weiterentwickelt. In der W-SIRT wird statt einer Einfachen eine Gewichtete Rückprojektion bei jeder Iteration verwendet, was eine bessere Konvergenz der W-SIRT gegenüber der SIRT zur Folge hat. Wie in anderen ET-Techniken auch, ist in der EHT für die Rekonstruktion des dreidimensionalen Tomogramms meist nur aus Projektionen innerhalb eines begrenzten Winkelbereichs möglich. Dies führt in den Tomogrammen zu einem sogenannten Missing Wedge, welcher neben dem Verlust von Au ösung auch Artefakte verursacht. Daher wird eine Methode vorgestellt, wie sich das Problem des Missing Wedge bei geeigneten Objekten durch Ausnutzung von Symmetrien entschärfen lässt. Das mittels EHT rekonstruierte 3D-Potential gibt Aufschluss über äußere (Morphologie) und innere Objektstruktur, sowie über das Mittlere Innere Potential (MIP) des Nanoobjektes. Dies wird am Beispiel von epitaktisch gewachsenen Nanodrähten (nanowires, NWs) aus GaAs und AlGaAs demonstriert. Anhand entsprechender Isopotentialflächen im 3D-Potential lässt sich die 3D-Morphologie studieren: Die Facetten an der Oberfläche der NWs erlauben Rückschlüsse über die dreidimensionale kristalline Struktur. Des Weiteren zeigt das rekonstruierte 3D-Potential eines AlGaAs/GaAs-Nanodrahtes deutlich dessen Kern/Schale-Struktur, da sich GaAs-Kern und AlGaAs-Schale bezüglich des MIP um 0.61 V unterscheiden. Im Falle dotierter Halbleiterstrukturen mit pn-Übergang (z.B. Transistoren) bietet die mittels EHT rekonstruierte Potentialverteilung auch Zugang zur Diffusionsspannung am pn-Übergang. Diese Größe kann ohne Projektions- und Oberflächeneffekte (dead layer) im Innern der Probe gemessen und in 3D analysiert werden. Für drei nadelförmig mittels FIB präparierte Proben (Nadeln) werden die Diffusionsspannungen bestimmt: Die Messungen ergeben für zwei Silizium-Nadeln jeweils 1.0 V und 0.5 V, sowie für eine Germanium-Nadel 0.4 V. Im Falle der GaAs- und AlGaAs-Nanodrähte reduziert der Missing Wedge die Genauigkeit der mittels EHT gewonnenen 3D-Potentiale merklich, insbesondere bezüglich der MIP-Bestimmung. Dagegen stimmen die Potentiale der Germanium und Silizium-Nadeln exzellent mit theoretischen Werten überein, wenn der Missing Wedge durch Ausnutzung der Objektsymmetrie behoben wird. / Revealing the essential structure-property relation of materials on a (sub-)nanometer scale requires a powerful Transmission Electron Microscopy (TEM). In this context, the intrinsic electrostatic and magnetic fields, which are related to the materials nano structure, play a crucial role. Electron-holographic tomography (EHT), that is, the combination of off-axis electron holography (EH) with electron tomography (ET), provides an unique access to this information, because it allows the quantitative 3D mapping of electrostatic potentials and magnetostatic vector fields with a resolution of a few (5-10) nanometers. The reconstruction of the 3D potential starts with the acquisition of a hologram tilt series in the electron microscope. The subsequent reconstruction of the electron object wave from each hologram yields a tilt series in both amplitude and phase images. Finally, the phase tilt series is used for the tomographic reconstruction of the 3D potential. In this work, EHT has been developed from a manual and time-consuming approach to a widely automated method. The automation includes the development of the first software package for computer-controlled acquisition of holographic tilt series (THOMAS), a prerequisite for efficient data collection. Using THOMAS, the acquisition time for a holographic tilt series, consisting of object and reference holograms, is reduced by more than a factor of three, compared to the previous, completely manual approaches. Meanwhile, the acquisition takes 2-3 hours on average. In addition, the holographic reconstruction and corresponding methods for removal of artefacts in the phase images have been automated, now including one-step procedures for complete tilt series. Furthermore, specific self-developed alignment routines facilitate the precise correction of displacements within the tilt series of the rod-shaped samples, which are investigated here (e.g. nanowires, FIB needles). For tomographic reconstruction, a W-SIRT algorithm based on a standard simultaneous iterative reconstruction technique (SIRT) has been developed. Within the W-SIRT, a weighted back-projection instead of a simple back-projection is used. This yields a better convergence of the W-SIRT compared to the SIRT. In most cases in EHT (likewise in other ET techniques), the reconstruction of the three-dimensional tomogram is only feasible from projections covering a limited tilt range. This leads to a so-called missing wedge in the tomogram, which causes not only a lower resolution but also artefacts. Therefore, a method is presented, how to solve the missing wedge problem for suitable objects by exploiting symmetries. The 3D potential offers the outer (morphology) and inner structure, as well as the mean inner potential (MIP) of the nano object. This is shown by means of EHT on epitaxially grown nanowires (NWs) of GaAs and AlGaAs. The 3D morphology is studied using the corresponding iso-surfaces of the 3D potential: The facets on the nanowires surface allow conclusions about the crystalline structure. Moreover, the reconstructed 3D potential of a AlGaAs/GaAs NW clearly shows its core/shell structure due to the MIP difference between GaAs and AlGaAs of 0.61 V. In case of doped semiconductor structures with pn-junctions (e.g. transistors) the potential distribution, reconstructed by EHT, also provides access to the built-in voltage across the pn-junction. The built-in voltage can be analyzed in 3D and measured without projection and surface effects (e.g. dead layers) within the sample. The measurements in three needle-shaped specimens, prepared by FIB, yield for two silicon needles 1.0 V and 0.5 V, and for a germanium needle 0.4 V. In case of the GaAs and AlGaAs nanowires the missing wedge reduces the accuracy of the reconstructed 3D potentials significantly, in particular in terms of MIP determination. However, the potentials of the silicon and germanium needles are in excellent agreement with theoretical values, when the object symmetry is exploited to fill-up the missing wedge.
15

Structural, Kinetic and Thermodynamic Aspects of the Crystal Polymorphism of Substituted Monocyclic Aromatic Compounds

Svärd, Michael January 2011 (has links)
This work concerns the interrelationship between thermodynamic, kinetic and structural aspects of crystal polymorphism. It is both experimental and theoretical, and limited with respect to compounds to substituted monocyclic aromatics. Two polymorphs of the compound m-aminobenzoic acid have been experimentally isolated and characterized by ATR-FTIR spectroscopy, X-ray powder diffraction and optical microscopy. In addition, two polymorphs of the compound m-hydroxybenzoic acid have been isolated and characterized by ATR-FTIR spectroscopy, high-temperature XRPD, confocal Raman, hot-stage and scanning electron microscopy. For all polymorphs, melting properties and specific heat capacity have been determined calorimetrically, and the solubility in several pure solvents measured at different temperatures with a gravimetric method. The solid-state activity (ideal solubility), and the free energy, enthalpy and entropy of fusion have been determined as functions of temperature for all solid phases through a thermodynamic analysis of multiple experimental data. It is shown that m-aminobenzoic acid is an enantiotropic system, with a stability transition point determined to be located at approximately 156°C, and that the difference in free energy at room temperature between the polymorphs is considerable. It is further shown that m-hydroxybenzoic acid is a monotropic system, with minor differences in free energy, enthalpy and entropy. 1393 primary nucleation experiments have been carried out for both compounds in different series of repeatability experiments, differing with respect to solvent, cooling rate, saturation temperature and solution preparation and pre-treatment. It is found that in the vast majority of experiments, either the stable or the metastable polymorph is obtained in the pure form, and only for a few evaluated experimental conditions does one polymorph crystallize in all experiments. The fact that the polymorphic outcome of a crystallization is the result of the interplay between relative thermodynamic stability and nucleation kinetics, and that it is vital to perform multiple experiments under identical conditions when studying nucleation of polymorphic compounds, is strongly emphasized by the results of this work. The main experimental variable which in this work has been found to affect which polymorph will preferentially crystallize is the solvent. For m-aminobenzoic acid, it is shown how a significantly metastable polymorph can be obtained by choosing a solvent in which nucleation of the stable form is sufficiently obstructed. For m-hydroxybenzoic acid, nucleation of the stable polymorph is promoted in solvents where the solubility is high. It is shown how this partly can be rationalized by analysing solubility data with respect to temperature dependence. By crystallizing solutions differing only with respect to pre-treatment and which polymorph was dissolved, it is found that the immediate thermal and structural history of a solution can have a significant effect on nucleation, affecting the predisposition for overall nucleation as well as which polymorph will preferentially crystallize. A set of polymorphic crystal structures has been compiled from the Cambridge Structural Database. It is found that statistically, about 50% crystallize in the crystallographic space group P21/c. Furthermore, it is found that crystal structures of polymorphs tend to differ significantly with respect to either hydrogen bond network or molecular conformation. Molecular mechanics based Monte Carlo simulated annealing has been used to sample different potential crystal structures corresponding to minima in potential energy with respect to structural degrees of freedom, restricted to one space group, for each of the polymorphic compounds. It is found that all simulations result in very large numbers of predicted structures. About 15% of the predicted structures have excess relative lattice energies of &lt;=10% compared to the most stable predicted structure; a limit verified to reflect maximum lattice energy differences between experimentally observed polymorphs of similar compounds. The number of predicted structures is found to correlate to molecular weight and to the number of rotatable covalent bonds. A close study of two compounds has shown that predicted structures tend to belong to different groups defined by unique hydrogen bond networks, located in well-defined regions in energy/packing space according to the close-packing principle. It is hypothesized that kinetic effects in combination with this structural segregation might affect the number of potential structures that can be realized experimentally. The experimentally determined crystal structures of several compounds have been geometry-optimized (relaxed) to the nearest potential energy minimum using ten different combinations of common potential energy functions (force fields) and techniques for assigning nucleus-centred point charges used in the electrostatic description of the energy. Changes in structural coordinates upon relaxation have been quantified, crystal lattice energies calculated and compared with experimentally determined enthalpies of sublimation, and the energy difference before and after relaxation computed and analysed. It is found that certain combinations of force fields and charge assignment techniques work reasonably well for modelling crystal structures of small aromatics, provided that proper attention is paid to electrostatic description and to how the force field was parameterized. A comparison of energy differences for randomly packed as well as experimentally determined crystal structures before and after relaxation suggests that the potential energy function for the solid state of a small organic molecule is highly undulating with many deep, narrow and steep minima. / QC 20110527
16

Predikce vlivu mutace na rozpustnost proteinů / Prediction of the Effect of Mutation on Protein Solubility

Velecký, Jan January 2020 (has links)
The goal of the thesis is to create a predictor of the effect of a mutation on protein solubility given its initial 3D structure. Protein solubility prediction is a bioinformatics problem which is still considered unsolved. Especially a prediction using a 3D structure has not gained much attention yet. A relevant knowledge about proteins, protein solubility and existing predictors is included in the text. The principle of the designed predictor is inspired by the Surface Patches article and therefore it also aims to validate the results achieved by its authors. The designed tool uses changes of positive regions of the electric potential above the protein's surface to make a prediction. The tool has been successfully implemented and series of computationally expensive experiments have been performed. It was shown that the electric potential, hence the predictor itself too, can be successfully used just for a limited set of proteins. On top of that, the method used in the article correlates with a much simpler variable - the protein's net charge.
17

Elektronen-Holographische Tomographie zur 3D-Abbildung von elektrostatischen Potentialen in Nanostrukturen: Electron Holographic Tomography for the 3D Mapping of Electrostatic Potentials in Nano-Structures

Wolf, Daniel 04 February 2011 (has links)
Die Aufklärung der grundlegenden Struktur-Eigenschaft-Beziehung von Materialen auf der (Sub-)Nanometerskala benötigt eine leistungsfähige Transmissionselektronenmikroskopie. Dabei spielen insbesondere die durch die Nanostruktur hervorgerufenen intrinsischen elektrischen und magnetischen Feldverteilungen eine entscheidende Rolle. Die Elektronen-Holographische Tomographie (EHT), d.h. die Kombination von off-axis Elektronenholographie (EH) und Elektronentomographie (ET), bietet einen einzigartigen Zugang zu dieser Information, weil sie die quantitative 3D-Abbildung elektrostatischer Potentiale und magnetostatischer Vektorfelder bei einer Auflösung von wenigen (5-10) Nanometern ermöglicht. Für die Rekonstruktion des 3D-Potentials erfolgt zunächst die Aufzeichnung einer Kippserie von Hologrammen im Elektronenmikroskop. Durch die anschließende Rekonstruktion der Objektwelle aus jedem Hologramm liegt eine Amplituden- und eine Phasenkippserie vor. Die Phasenkippserie wird schließlich zur tomographischen 3D-Rekonstruktion des elektrostatischen Potentials verwendet. Im Rahmen dieser Arbeit wurde die EHT von einer manuell aufwendigen zu einer weitestgehend automatisierten Methode entwickelt. Die Automatisierung beinhaltet die Entwicklung des ersten Softwarepaketes zur computergestützten Aufzeichnung einer holographischen Kippserie (THOMAS). Verglichen mit rein manueller Vorgehensweise verkürzt sich mit THOMAS die Dauer für die Aufnahme einer holographischen Kippserie, bestehend aus Objekt- und Leerhologrammen, auf weniger als ein Drittel. Mittlerweile beträgt die Aufnahmezeit im Mittel etwa 2-3 Stunden. Auch die holographische Rekonstruktion und zugehörige Operationen zur Entfernung von Artefakten in den Phasenbildern ist durch entsprechende Prozeduren, welche für eine gesamte Kippserie in einem Schritt anwendbar sind, automatisiert. Zudem ermöglichen erst spezielle selbstentwickelte Ausrichtungsmethoden die exakte Verschiebungskorrektur von Kippserien der hier untersuchten stabförmigen Objekte (Nanodrähte, FIB-präparierte Nadeln). Für die tomographische Rekonstruktion wurde in dieser Arbeit die Simultane Iterative Rekonstruktionstechnik (SIRT) zur W-SIRT weiterentwickelt. In der W-SIRT wird statt einer Einfachen eine Gewichtete Rückprojektion bei jeder Iteration verwendet, was eine bessere Konvergenz der W-SIRT gegenüber der SIRT zur Folge hat. Wie in anderen ET-Techniken auch, ist in der EHT für die Rekonstruktion des dreidimensionalen Tomogramms meist nur aus Projektionen innerhalb eines begrenzten Winkelbereichs möglich. Dies führt in den Tomogrammen zu einem sogenannten Missing Wedge, welcher neben dem Verlust von Au ösung auch Artefakte verursacht. Daher wird eine Methode vorgestellt, wie sich das Problem des Missing Wedge bei geeigneten Objekten durch Ausnutzung von Symmetrien entschärfen lässt. Das mittels EHT rekonstruierte 3D-Potential gibt Aufschluss über äußere (Morphologie) und innere Objektstruktur, sowie über das Mittlere Innere Potential (MIP) des Nanoobjektes. Dies wird am Beispiel von epitaktisch gewachsenen Nanodrähten (nanowires, NWs) aus GaAs und AlGaAs demonstriert. Anhand entsprechender Isopotentialflächen im 3D-Potential lässt sich die 3D-Morphologie studieren: Die Facetten an der Oberfläche der NWs erlauben Rückschlüsse über die dreidimensionale kristalline Struktur. Des Weiteren zeigt das rekonstruierte 3D-Potential eines AlGaAs/GaAs-Nanodrahtes deutlich dessen Kern/Schale-Struktur, da sich GaAs-Kern und AlGaAs-Schale bezüglich des MIP um 0.61 V unterscheiden. Im Falle dotierter Halbleiterstrukturen mit pn-Übergang (z.B. Transistoren) bietet die mittels EHT rekonstruierte Potentialverteilung auch Zugang zur Diffusionsspannung am pn-Übergang. Diese Größe kann ohne Projektions- und Oberflächeneffekte (dead layer) im Innern der Probe gemessen und in 3D analysiert werden. Für drei nadelförmig mittels FIB präparierte Proben (Nadeln) werden die Diffusionsspannungen bestimmt: Die Messungen ergeben für zwei Silizium-Nadeln jeweils 1.0 V und 0.5 V, sowie für eine Germanium-Nadel 0.4 V. Im Falle der GaAs- und AlGaAs-Nanodrähte reduziert der Missing Wedge die Genauigkeit der mittels EHT gewonnenen 3D-Potentiale merklich, insbesondere bezüglich der MIP-Bestimmung. Dagegen stimmen die Potentiale der Germanium und Silizium-Nadeln exzellent mit theoretischen Werten überein, wenn der Missing Wedge durch Ausnutzung der Objektsymmetrie behoben wird.:Inhaltsverzeichnis 1. Einleitung 2. Grundlagen der TEM 2.1. Elastische Elektron-Objekt-Wechselwirkung 2.1.1. 3D-Potentialverteilung im Festkörper und Mittleres Inneres Potential (MIP) 2.1.2. Elektrische Phasenschiebung 2.1.3. Magnetische Phasenschiebung 2.1.4. Amplitudenkontrast 2.2. Abbildungstheorie 2.2.1. Abbildung durch ideale Linse 2.2.2. Abbildung durch fehlerbehaftete Linse 2.2.3. Partiell kohärente Abbildung durch fehlerbehaftete Linse 2.2.4. Abbildung schwacher Objekte 2.3. Zusammenfassung 3. Off-axis Elektronenholographie 3.1. Holographisches Prinzip 3.2. Aufzeichnung des Elektronenhologramms 3.3. Rekonstruktion der Bildwelle 3.4. Ein uss der Aberrationen 3.5. Stochastische Phasenschwankung 3.6. Stochastische Potentialschwankung und optimale Dicke für 2D-Abbildungen von Potentialen 3.7. Phase Unwrapping 3.7.1. Eindimensionales Phase Unwrapping 3.7.2. Goldsteins Branch-Cut Algorithmus 3.7.3. Flynns (Weighted) Minimum Discontinuity Approach (W)MDA 3.7.4. Anwendungsbeispiel 3.8. Zusammenfassung 4. Elektronentomographie 4.1. Ein-Achsen-Tomographie 4.2. Projektion 4.2.1. Die Radontransformation 4.2.2. Das Projektions-Schnitt-Theorem 4.2.3. TEM Abbildungsmodi und Projektionsbedingung für Tomographie 4.3. Rekonstruktion des Tomogramms 4.3.1. Gewichtete Rückprojektion 4.3.2. Simultane Iterative Rekonstruktions-Technik (SIRT) 4.3.3. Tomographische Auflösung 4.3.4. Missing Wedge 4.4. Automatisierte Elektronentomographie 4.5. Ausrichtung der Kippserie 4.5.1. Ausrichtung mittels Kreuzkorrelation 4.5.2. Ausrichtung anhand von Bezugspunkten 4.5.3. Ausrichtung ohne Bezugspunkte 4.6. 3D-Visualisierung 4.7. Rauschfilterung 4.8. Zusammenfassung 5. Holographische Tomographie 5.1. Vorarbeiten 5.2. Computergestützte Aufzeichnung einer holographischen Kippserie 5.2.1. Charakteristik des TEM Goniometers 5.2.2. Kalibrierung 5.2.3. Bestimmung des Euzentrischen Punktes und z-Korrektur in die Euzentrische Höhe 5.2.4. Optimale Position des Leerhologramms 5.2.5. Computergestützte Aufzeichnung 5.2.6. THOMAS 5.2.7. Zusammenfassung 5.3. Holographische Rekonstruktion 5.3.1. Beseitigung von Artefakten in Elektronenhologrammen 5.3.2. Rekonstruktion mit Sinc-Filter 5.3.3. Stabilität des Phasen-Offsets 5.3.4. Interaktives Unwrapping einer Phasenkippserie 5.4. Ausrichtung der Phasen-Kippserie 5.4.1. Manuelle Ausrichtung mithilfe von Bezugslinien 5.4.2. Manuelle Ausrichtung mithilfe der Schnittebenen 5.4.3. Bestimmung der Kippachse 5.4.4. Identifizierung dynamischer Phasenschiebungen 5.5. Tomographische Rekonstruktion mittels W-SIRT 5.5.1. W-SIRT - Implementierung 5.5.2. Gewichtungsfilter 5.5.3. Konvergenz 5.5.4. z-Auflösung bei Missing Wedge 5.5.5. Artefakte bei Missing Wedge 5.5.6. Konvergenz bei Missing Wedge 5.5.7. Lineare Korrektur bei Missing Wedge 5.5.8. Ausnutzung der Objektsymmetrie bei Missing Wedge 5.5.9. Einfluss von Rauschen 5.5.10. Einfluss dynamischer Effekte 5.5.11. Zusammenfassung 6. 3D-Abbildung elektrostatischer Potentiale 127 6.1. Experimentelle Details 6.2. Latexkugel 6.3. Dotierte Halbleiter 6.3.1. Nadel-Präparation mittels FIB 6.3.2. Dotierte Silizium-Nadeln 6.3.3. n-Dotierte Germanium-Nadel 6.3.4. Untersuchung der Diffusionsspannung 6.4. Halbleiter-Nanodrähte 6.4.1. GaAs-Nanodraht 6.4.2. GaAs/AlGaAs-Nanodraht 6.4.3. Bestimmung der Mittleren Inneren Potentiale 7. Zusammenfassung und Ausblick A. Anhang A.1. Näherung der Klein-Gordon Gleichung A.2. Herleitung der Phase-Grating Approximation A.3. Elongationsfaktor / Revealing the essential structure-property relation of materials on a (sub-)nanometer scale requires a powerful Transmission Electron Microscopy (TEM). In this context, the intrinsic electrostatic and magnetic fields, which are related to the materials nano structure, play a crucial role. Electron-holographic tomography (EHT), that is, the combination of off-axis electron holography (EH) with electron tomography (ET), provides an unique access to this information, because it allows the quantitative 3D mapping of electrostatic potentials and magnetostatic vector fields with a resolution of a few (5-10) nanometers. The reconstruction of the 3D potential starts with the acquisition of a hologram tilt series in the electron microscope. The subsequent reconstruction of the electron object wave from each hologram yields a tilt series in both amplitude and phase images. Finally, the phase tilt series is used for the tomographic reconstruction of the 3D potential. In this work, EHT has been developed from a manual and time-consuming approach to a widely automated method. The automation includes the development of the first software package for computer-controlled acquisition of holographic tilt series (THOMAS), a prerequisite for efficient data collection. Using THOMAS, the acquisition time for a holographic tilt series, consisting of object and reference holograms, is reduced by more than a factor of three, compared to the previous, completely manual approaches. Meanwhile, the acquisition takes 2-3 hours on average. In addition, the holographic reconstruction and corresponding methods for removal of artefacts in the phase images have been automated, now including one-step procedures for complete tilt series. Furthermore, specific self-developed alignment routines facilitate the precise correction of displacements within the tilt series of the rod-shaped samples, which are investigated here (e.g. nanowires, FIB needles). For tomographic reconstruction, a W-SIRT algorithm based on a standard simultaneous iterative reconstruction technique (SIRT) has been developed. Within the W-SIRT, a weighted back-projection instead of a simple back-projection is used. This yields a better convergence of the W-SIRT compared to the SIRT. In most cases in EHT (likewise in other ET techniques), the reconstruction of the three-dimensional tomogram is only feasible from projections covering a limited tilt range. This leads to a so-called missing wedge in the tomogram, which causes not only a lower resolution but also artefacts. Therefore, a method is presented, how to solve the missing wedge problem for suitable objects by exploiting symmetries. The 3D potential offers the outer (morphology) and inner structure, as well as the mean inner potential (MIP) of the nano object. This is shown by means of EHT on epitaxially grown nanowires (NWs) of GaAs and AlGaAs. The 3D morphology is studied using the corresponding iso-surfaces of the 3D potential: The facets on the nanowires surface allow conclusions about the crystalline structure. Moreover, the reconstructed 3D potential of a AlGaAs/GaAs NW clearly shows its core/shell structure due to the MIP difference between GaAs and AlGaAs of 0.61 V. In case of doped semiconductor structures with pn-junctions (e.g. transistors) the potential distribution, reconstructed by EHT, also provides access to the built-in voltage across the pn-junction. The built-in voltage can be analyzed in 3D and measured without projection and surface effects (e.g. dead layers) within the sample. The measurements in three needle-shaped specimens, prepared by FIB, yield for two silicon needles 1.0 V and 0.5 V, and for a germanium needle 0.4 V. In case of the GaAs and AlGaAs nanowires the missing wedge reduces the accuracy of the reconstructed 3D potentials significantly, in particular in terms of MIP determination. However, the potentials of the silicon and germanium needles are in excellent agreement with theoretical values, when the object symmetry is exploited to fill-up the missing wedge.:Inhaltsverzeichnis 1. Einleitung 2. Grundlagen der TEM 2.1. Elastische Elektron-Objekt-Wechselwirkung 2.1.1. 3D-Potentialverteilung im Festkörper und Mittleres Inneres Potential (MIP) 2.1.2. Elektrische Phasenschiebung 2.1.3. Magnetische Phasenschiebung 2.1.4. Amplitudenkontrast 2.2. Abbildungstheorie 2.2.1. Abbildung durch ideale Linse 2.2.2. Abbildung durch fehlerbehaftete Linse 2.2.3. Partiell kohärente Abbildung durch fehlerbehaftete Linse 2.2.4. Abbildung schwacher Objekte 2.3. Zusammenfassung 3. Off-axis Elektronenholographie 3.1. Holographisches Prinzip 3.2. Aufzeichnung des Elektronenhologramms 3.3. Rekonstruktion der Bildwelle 3.4. Ein uss der Aberrationen 3.5. Stochastische Phasenschwankung 3.6. Stochastische Potentialschwankung und optimale Dicke für 2D-Abbildungen von Potentialen 3.7. Phase Unwrapping 3.7.1. Eindimensionales Phase Unwrapping 3.7.2. Goldsteins Branch-Cut Algorithmus 3.7.3. Flynns (Weighted) Minimum Discontinuity Approach (W)MDA 3.7.4. Anwendungsbeispiel 3.8. Zusammenfassung 4. Elektronentomographie 4.1. Ein-Achsen-Tomographie 4.2. Projektion 4.2.1. Die Radontransformation 4.2.2. Das Projektions-Schnitt-Theorem 4.2.3. TEM Abbildungsmodi und Projektionsbedingung für Tomographie 4.3. Rekonstruktion des Tomogramms 4.3.1. Gewichtete Rückprojektion 4.3.2. Simultane Iterative Rekonstruktions-Technik (SIRT) 4.3.3. Tomographische Auflösung 4.3.4. Missing Wedge 4.4. Automatisierte Elektronentomographie 4.5. Ausrichtung der Kippserie 4.5.1. Ausrichtung mittels Kreuzkorrelation 4.5.2. Ausrichtung anhand von Bezugspunkten 4.5.3. Ausrichtung ohne Bezugspunkte 4.6. 3D-Visualisierung 4.7. Rauschfilterung 4.8. Zusammenfassung 5. Holographische Tomographie 5.1. Vorarbeiten 5.2. Computergestützte Aufzeichnung einer holographischen Kippserie 5.2.1. Charakteristik des TEM Goniometers 5.2.2. Kalibrierung 5.2.3. Bestimmung des Euzentrischen Punktes und z-Korrektur in die Euzentrische Höhe 5.2.4. Optimale Position des Leerhologramms 5.2.5. Computergestützte Aufzeichnung 5.2.6. THOMAS 5.2.7. Zusammenfassung 5.3. Holographische Rekonstruktion 5.3.1. Beseitigung von Artefakten in Elektronenhologrammen 5.3.2. Rekonstruktion mit Sinc-Filter 5.3.3. Stabilität des Phasen-Offsets 5.3.4. Interaktives Unwrapping einer Phasenkippserie 5.4. Ausrichtung der Phasen-Kippserie 5.4.1. Manuelle Ausrichtung mithilfe von Bezugslinien 5.4.2. Manuelle Ausrichtung mithilfe der Schnittebenen 5.4.3. Bestimmung der Kippachse 5.4.4. Identifizierung dynamischer Phasenschiebungen 5.5. Tomographische Rekonstruktion mittels W-SIRT 5.5.1. W-SIRT - Implementierung 5.5.2. Gewichtungsfilter 5.5.3. Konvergenz 5.5.4. z-Auflösung bei Missing Wedge 5.5.5. Artefakte bei Missing Wedge 5.5.6. Konvergenz bei Missing Wedge 5.5.7. Lineare Korrektur bei Missing Wedge 5.5.8. Ausnutzung der Objektsymmetrie bei Missing Wedge 5.5.9. Einfluss von Rauschen 5.5.10. Einfluss dynamischer Effekte 5.5.11. Zusammenfassung 6. 3D-Abbildung elektrostatischer Potentiale 127 6.1. Experimentelle Details 6.2. Latexkugel 6.3. Dotierte Halbleiter 6.3.1. Nadel-Präparation mittels FIB 6.3.2. Dotierte Silizium-Nadeln 6.3.3. n-Dotierte Germanium-Nadel 6.3.4. Untersuchung der Diffusionsspannung 6.4. Halbleiter-Nanodrähte 6.4.1. GaAs-Nanodraht 6.4.2. GaAs/AlGaAs-Nanodraht 6.4.3. Bestimmung der Mittleren Inneren Potentiale 7. Zusammenfassung und Ausblick A. Anhang A.1. Näherung der Klein-Gordon Gleichung A.2. Herleitung der Phase-Grating Approximation A.3. Elongationsfaktor

Page generated in 0.1293 seconds