• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 485
  • 76
  • 51
  • 43
  • 38
  • 36
  • 36
  • 36
  • 36
  • 36
  • 36
  • 17
  • 11
  • 9
  • 9
  • Tagged with
  • 983
  • 570
  • 345
  • 173
  • 166
  • 118
  • 100
  • 71
  • 63
  • 57
  • 57
  • 56
  • 56
  • 53
  • 51
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

The C. elegans p53 Family Gene cep-1 and the Nondisjunction Gene him-5 are Required for Meiotic Recombination

Jolliffe, Anita Kristine 10 January 2012 (has links)
p53 promotes maintenance of genetic information either by causing apoptosis of damaged cells, or by altering the cell cycle and repair pathways such that damage can be accurately repaired. The nematode Caenorhabditis elegans possesses only one p53 family member, CEP-1, that controls apoptosis and the cell cycle in response to genotoxic stress. Mutation in the meiotic gene him-5 increases nondisjunction of the X chromosome, resulting in increased frequencies of XO male and XXX Dpy progeny, and it affects the frequency of meiotic recombination on X. him-5 is allelic to the ORF D1086.4, which encodes a putative basic protein with no clear homologues or domain structure. The modest embryonic lethality (Emb) of him-5 mutants is dramatically increased by mutation of cep-1 but no change is seen in the proportion of XO male or XXX Dpy progeny. The synergistic effects of cep-1 and him-5 mutation are independent of CEP-1's DNA damage regulators and other meiotic mutants, and they do not involve deregulated apoptosis. cep-1; him-5 double mutants have abnormal chromatin morphology in diakinesis-arrested oocytes reminiscent of that seen in double strand break (DSB) repair mutants. This phenotype depends on the presence of SPO-11-induced meiotic DSBs, suggesting CEP-1 and HIM-5 function together to promote accurate recombination during meiosis. In support of this hypothesis, cep-1; him-5 show a significant reduction in crossover frequency between autosomal markers compared to wild-type or either single mutant alone, suggesting they function together to promote meiotic crossing over. The X chromosome nondisjunction in both him-5 and cep-1; him-5 is a result of failure of DSB formation and subsequent chiasma formation on the X. However, the embryonic lethality phenotype of him-5 and cep-1; him-5 is caused by a defect either downstream or in parallel to meiotic DSB formation. The diakinesis chromatin phenotype of cep-1; him-5 suggests this defect may be in meiotic DSB repair. This is confirmed by the fact that cep-1; him-5 animals show more persistent meiotic DSB-associated RAD-51 foci staining compared to wild-type, suggesting CEP-1 and HIM-5 may function in efficient resolution of SPO-11-induced DSBs during meiosis. A role for CEP-1 in promoting accurate repair of DSBs during meiosis may be related to p53's function in promoting faithful meiotic recombination in mammalian cells. HIM-5's role in DSB formation and repair suggests another mechanistic link between these recombination steps. Meiotic recombination is vital for genome stability, and characterization of the role of CEP-1 and HIM-5 will increase our understanding of the p53 family and genetic redundancy at multiple steps in this process.
232

The Genetic and Behavioral Analysis of Insulin Signaling in Caenorhabditis Elegans Learning and Memory

Lin, Chia Hsun Anthony 15 February 2010 (has links)
Insulin signaling plays a prominent role in regulation of dauer formation and longevity in Caenorhabditis elegans. Here, I show that insulin signaling also is required in benzaldehyde-starvation associative plasticity, where worms pre-exposed to the odor attractant benzaldehyde in the absence of food subsequently demonstrate a conditioned aversion response towards the odorant. Animals with mutations in ins-1, daf-2, and age-1 which encode the homolog of human insulin, insulin/IGF-1 receptor, and PI-3 kinase, respectively, have significant deficits in benzaldehyde-starvation associative plasticity. Using a conditional allele I show that the behavioral roles of DAF-2 signaling in associative plasticity can be dissociated, with DAF-2 signaling playing a more significant role in the memory retrieval than in memory acquisition. I propose DAF-2 signaling acts as a learning specific starvation signal in the memory acquisition phase of benzaldehyde-starvation associative plasticity but functions to switch benzaldehyde-sensing AWC neurons into an avoidance signaling mode during memory retrieval.
233

The Evolution of Caenorhabditis elegans Sperm Traits Involved in Reproductive Success by Self-fertilizing Hermaphrodites and in Male-male Post-mating Contests

Murray, Rosalind Louise 15 February 2010 (has links)
Sperm play a pivotal role in determining the reproductive success of individuals whose sperm must compete directly with that of others. I used sperm precedence assays and experimental evolution to examine the role of sperm traits in the reproductive success of hermaphrodites and males in the androdioecious nematode Caenorhabditis elegans. First, sperm size and the rate of reproduction were analyzed, in the context of male-male sperm competition, for evidence of natural heritable variation. Sperm size proved to be a strong indicator of second-male sperm precedence in the genotypes examined. Second, I tested the theoretically predicted effect of larval development time on the number of self-sperm produced by hermaphrodites. I demonstrated that a short larval development period favored the evolution of fewer sperm, inline with theoretical predictions. These results provide important insights into C. elegans reproductive biology and more generally to our understanding of the evolution of reproductive systems.
234

The C. elegans p53 Family Gene cep-1 and the Nondisjunction Gene him-5 are Required for Meiotic Recombination

Jolliffe, Anita Kristine 10 January 2012 (has links)
p53 promotes maintenance of genetic information either by causing apoptosis of damaged cells, or by altering the cell cycle and repair pathways such that damage can be accurately repaired. The nematode Caenorhabditis elegans possesses only one p53 family member, CEP-1, that controls apoptosis and the cell cycle in response to genotoxic stress. Mutation in the meiotic gene him-5 increases nondisjunction of the X chromosome, resulting in increased frequencies of XO male and XXX Dpy progeny, and it affects the frequency of meiotic recombination on X. him-5 is allelic to the ORF D1086.4, which encodes a putative basic protein with no clear homologues or domain structure. The modest embryonic lethality (Emb) of him-5 mutants is dramatically increased by mutation of cep-1 but no change is seen in the proportion of XO male or XXX Dpy progeny. The synergistic effects of cep-1 and him-5 mutation are independent of CEP-1's DNA damage regulators and other meiotic mutants, and they do not involve deregulated apoptosis. cep-1; him-5 double mutants have abnormal chromatin morphology in diakinesis-arrested oocytes reminiscent of that seen in double strand break (DSB) repair mutants. This phenotype depends on the presence of SPO-11-induced meiotic DSBs, suggesting CEP-1 and HIM-5 function together to promote accurate recombination during meiosis. In support of this hypothesis, cep-1; him-5 show a significant reduction in crossover frequency between autosomal markers compared to wild-type or either single mutant alone, suggesting they function together to promote meiotic crossing over. The X chromosome nondisjunction in both him-5 and cep-1; him-5 is a result of failure of DSB formation and subsequent chiasma formation on the X. However, the embryonic lethality phenotype of him-5 and cep-1; him-5 is caused by a defect either downstream or in parallel to meiotic DSB formation. The diakinesis chromatin phenotype of cep-1; him-5 suggests this defect may be in meiotic DSB repair. This is confirmed by the fact that cep-1; him-5 animals show more persistent meiotic DSB-associated RAD-51 foci staining compared to wild-type, suggesting CEP-1 and HIM-5 may function in efficient resolution of SPO-11-induced DSBs during meiosis. A role for CEP-1 in promoting accurate repair of DSBs during meiosis may be related to p53's function in promoting faithful meiotic recombination in mammalian cells. HIM-5's role in DSB formation and repair suggests another mechanistic link between these recombination steps. Meiotic recombination is vital for genome stability, and characterization of the role of CEP-1 and HIM-5 will increase our understanding of the p53 family and genetic redundancy at multiple steps in this process.
235

Caractérisation fonctionnelle de GIT-1, PIX-1 et PAK-1 chez C.elegans

Harel, Sharon 08 1900 (has links) (PDF)
Le nématode Caenorhabditis elegans est un organisme polyvalent et unique pour l'étude de la biologie du développement, de la neurologie et des mécanismes complexes de signalisation des GTPases. Ce modèle animal offre une opportunité unique pour l'étude du rôle des protéines dans le développement neurologique et les maladies. Les recherches portaient sur trois gènes : pix-1, git-1 et pak-1. Chez les mammifères, GIT / PIX / PAK agissent comme une plateforme d'intégration de la signalisation des GTPases Rho et Arf dans les processus biologiques tels que : la polarité cellulaire, la migration, le trafic vésiculaire, la formation des synapses et la morphologie des épines dendritiques. Ces recherches ont amené l'utilisation des approches génétiques et microscopiques pour établir que pix-1, git-1 et pak-1 contrôlent les phases précoces et tardives de l'élongation de l'embryon par la régulation de l'activité des chaînes légères de myosine (CLM). Les résultats de recherche suggèrent un positionnement de pix-1 et pak-1 dans l'une des voies de signalisation contrôlant la phosphorylation de ces CLMs en parallèle de la voie mel-11 / let-502. MEL-11 est une phosphatase des CLMs agissant de façon antagoniste à LET-502 (une kinase effectrice des Rhos) dans l'une des deux voies de signalisation redondantes qui assurent l'étape précoce d'élongation embryonnaire. Les résultats suggèrent, de plus, l'implication de mel-11 et let-502 au cours de la phase tardive de l'allongement. Un certain nombre de résultats suggèrent aussi une implication des intégrines ina-1 dans ces processus. La caractérisation fonctionnelle de pix-1, git-1 et pak-1 chez les nématodes adultes démontre leur implication dans le contrôle du comportement de recherche de nourriture (comportement de forage). Ce comportement dépend de la neutotransmission glutamatergique et dopaminergique et implique des mécanismes cellulaires similaires à la plasticité synaptique chez les mammifères. Un lien a été établi entre l'expression des récepteurs au glutamate AMPA homologue de GLR-l et PIX-l en utilisant la microscopie quantitative, la cytométrie de flux et des tests de comportement dans des labyrinthes micro-fluidiques secs. Les résultats suggèrent que les animaux mutants pour pix-1 contrôleraient la neurotransmission glutamatergique de façon indirecte. La conservation fonctionnelle du complexe GIT / PIX / PAK chez les invertébrés permettrait d'utiliser notre modèle dans l'identification de cibles thérapeutiques et de composés actifs contre les pathologies associées à des mutations dans aPIX et PAK3. Il aidera en outre à fournir des éclaircissements sur la fonction et les mécanismes de régulation des GTPases. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : GTPases monomériques, GIT/PIX/PAK., C. elegans, signalisation cellulaire, développement embryonnaire, neuro-transmission glutamatergique.
236

The neuromolecular mechanisms that coordinate food availability with C. elegans male sexual behavior

Gruninger, Todd Ryan 15 May 2009 (has links)
Organisms must coordinate behavioral and physiological responses to changingenvironmental conditions. In the nematode C. elegans, the presence or absence of foodin the environment affects many metabolic and behavioral responses, including fathomeostasis, lifespan, and male mating. Specifically, male mating behavior normallyoccurs when a well-nourished male encounters a hermaphrodite, and is repressed if themale is under-nourished. To understand how environmental changes influence the driveto carry out specific behavioral tasks, I used C. elegans male mating as a model.Previously, mutants were isolated that display male mating behavior at inappropriatetimes, i.e. in the absence of mating cues. Loss of function mutations in the ERG K+channel, UNC-103, results in spontaneous seizures of the male sex muscles.Interestingly, I found that food deprivation can suppress unc-103(lf)-induced seizures,suggesting that pathways activated under this environmental condition can suppress theexcitability of the mating circuit.Using molecular, genetic, and behavioral assays, I identified sensory andmolecular mechanisms that reduce sex-muscle excitability under food-deprived conditions. I found that mutations that affect the muscular feeding organ, the pharynx,phenocopy the effects of food deprivation, and reduce sex-muscle excitability. Idemonstrated that mutations in the pharyngeal muscle protein, tropomyosin, cause thepharyngeal neurosecretory motor neurons (NSMs) to increase pharyngeal excitabilityand reduce sex-muscle excitability. Additionally, I found that olfactory neurons (AWCs)with sensory cilia exposed to the environment are up-regulated in the absence of foodstimuli, and also send inhibitory signals to the sex muscles. To determine howchemosensory and pharyngeal neurons in the head can signal to the genitalia, Ihypothesized that one mechanism could be via secretion of metabolic hormones. To testthis, I examined loss-of-function mutations in the insulin-like receptor, DAF-2, which isknown to regulate many behavioral and physiological responses to food. I demonstratedthat DAF-2 activity in the sex muscles is required for food-deprivation suppression ofunc-103(0)-induced seizures. I then identified components of a novel-insulin-like/DAF-2signaling pathway that reduces excitability. Specifically, I propose that ligand binding toDAF-2 activates PLC- and leads to increased cystolic Ca2+. This Ca2+ influx activatesCaMKII, which can phosphorylate/activate EAG-like K+ channels, thereby reducing cellexcitability.
237

Circuits attenuating seizures under well-fed and food-deprived conditions in C. elegans male sex muscles

Leboeuf, Brigitte L. 2009 May 1900 (has links)
The circuits that allow organisms to control behavioral timing need to be tightly regulated to ensure execution of appropriate environmental responses. Disrupting such regulation results in individuals unable to perform tasks necessary for survival and propagation. Identifying the molecular components regulating behaviors will enable compensation where behavioral impediments to survival exist. To identify circuits of behavioral regulation, I studied male mating behavior in the nematode Caenorhabditis elegans. Specifically, I focused on the step wherein the male inserts his copulatory spicules into the hermaphrodite vulva, as vulva penetration is required for successful sperm transfer. This step must be tightly regulated; if the spicules protract too soon or not at all, vulva penetration and thus successful mating will not occur. In this dissertation, I elucidate the circuits regulating sex-muscle excitability under standard conditions and describe how these pathways are augmented to further reduce excitability under food deprivation conditions. I employ a variety of assays to identify and analyze these circuits, including genetic manipulation, biochemical techniques, and behavioral assays. Under standard conditions the calcium/calmodulin-dependent protein kinase II (CaMKII) encoded by unc-43 is required to inhibit C. elegans male sex-muscle seizures; under conditions where food is scarce, I propose that CaMKII is further up-regulated to activate the EAG K+ channel EGL-2 through a direct interaction. The CaMKII/EGL-2 interaction functions to attenuate calcium influx from L-type voltage-sensitive calcium channels (L-VGCCs), while CaMKII also downregulates calcium influx from ryanodine receptors. Additionally, another K+ channel, the voltage- and calcium-sensitive big current channel SLO-1, attenuates sex-muscle excitability by inhibiting L-VGCCs under food deprivation conditions. In conclusion, CaMKII and EGL-2?s paralog, UNC-103/ERG-like K+ channel, are required when food is plentiful to prevent premature sex-muscle contractions, while food deprivation reduces cell excitability and thereby inhibits inappropriate seizures through CaMKII, EGL-2, and SLO-1.
238

Metabolism of mixtures of polycyclic aromatic hydrocarbons (PAHs) by Cunninghamella elegans

Olatubi, Oluwaseun Alfred 25 April 2007 (has links)
Polycyclic aromatic hydrocarbons (PAHs) are environmentally significant compounds due to the toxicity of some members. They are ubiquitous and are persistent bioaccumulative toxins(PBTs). The toxicity of PAHs represents a risk to human health, and there are varied risk assessment approaches to quantifying the risk posed by PAHs based on exposure routes and scenarios. PAHs are not carcinogenic until they are metabolically activated as the body attempts to break them down and forms reactive metabolites that bind to the DNA causing subsequent replication in the cells. Fundamental to assessing the risk posed by PAHs is understanding the metabolism of PAHs. Since exposure to PAHs is never to single PAHs, understanding what differences may occur in mixtures of PAHs gives accurate assessment of the dangers of PAHs. Understanding the dynamics of complex metabolism vis-a-vis single metabolism of PAHs and possible effects on the toxicity expression of PAHs is a necessary advancement to accurately impact and guide remediation strategies. Studies were carried out comparing the metabolism of the PAHs Phenanthrene (PHE), Flouranthene (FLA) and Benzo[a]pyrene (BAP) in single, binary and ternary mixtures by monitoring the disappearance of the parent compound. It was observed that PAH metabolism in the single PAH experiment differed from metabolism in both binary and ternary mixtures. Enzyme competition was evident in the metabolism of mixtures, changing significantly the metabolism patterns of individual PAHs. PAH structure was also seen to affect metabolism in mixtures and the possible creation of toxicity effects during mixture metabolism. PAH concentration changed over time with faster change during single PAH metabolism followed by ternary mixture metabolism and finally binary metabolism. These results affirm that substrate interactions must be considered in the risk assessment approaches to the dangers posed by exposure to PAHs.
239

Recherche de gènes et de molécules freinant la dégénérescence musculaire chez deux modèles de la myopathie de Duchenne le nématode Cænorhabditis elegans et la souris mdx /

Carre-Pierrat, Maïté Ségalat, Laurent. January 2006 (has links) (PDF)
Reproduction de : Thèse de doctorat : Biologie : Lyon 1 : 2006. / Titre provenant de l'écran titre. Bibliogr. f. 191-209.
240

Etude de l'exocytose à la membrane apicale des cellules épithéliales de Caenorhabditis elegans

Benedetto, Alexandre Labouesse, Michel. January 2007 (has links) (PDF)
Thèse doctorat : Aspects Moléculaires et Cellulaires de la Biologie : Strasbourg 1 : 2006. / Thèse soutenue sur un ensemble de travaux. Titre provenant de l'écran-titre. Bibliogr. 27 p.

Page generated in 0.0392 seconds