• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elektromanipulation einzelner Polyelektrolytmoleküle

Friedsam, Claudia. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--München.
2

Elektrostatische Korrektur der chromatischen und sphärischen Aberration von Teilchenlinsen

Weißbäcker, Christoph. Unknown Date (has links)
Techn. Universiẗat, Diss., 2001--Darmstadt.
3

Elektrostatisch unterstützte Handhabungstechniken in der Mikromontage /

Wrege, Jan. January 2007 (has links)
Zugl.: Braunschweig, Techn. Universiẗat, Diss., 2007.
4

Hybrid numerical modelling and simulation of electrostatic force microscope

Bala, Uzzal Binit January 2008 (has links)
Zugl.: Hannover, Univ., Diss., 2008
5

Lokale elektrophoretische Abscheidung keramischer Partikel in stationären inhomogenen elektrischen Feldern in polaren und unpolaren Lösemitteln und deren Mischungen / Local electrophoretic deposition of ceramic particles in static inhomogenous electric fields in polar and nonpolar media and mixtures thereof

Schäfer, Markus Manfred January 2021 (has links) (PDF)
Die Elektrophoretische Abscheidung (EPD) ist ein zweistufiger Prozess, bei dem geladene Partikel zunächst aufgrund eines elektrischen Feldes in einer Suspension bewegt und anschließend auf einer Oberfläche abgeschieden werden. Aufgrund der Möglichkeit zur kostengünstigen Massenproduktion von Filmen auf Oberflächen sowie darauf basierenden dreidimensionalen Mehrschichtsystemen, ist die EPD für die Industrie und die Medizin von großem Interesse. Der 3D-Druck ist dagegen weniger zur Massenproduktion, sondern vielmehr zur Herstellung von Prototypen in niedriger Stückzahl geeignet, was ihn jedoch nicht weniger interessant für Industrie und Medizin macht. Beim 3D-Druck wird das Material zum Aufbau einer dreidimensionalen Struktur lokal zur Verfügung gestellt, weshalb er den additiven Herstellungsverfahren zugeordnet werden kann. Eine Kombination beider Verfahren eröffnet neue Möglichkeiten zum Aufbau dreidimensionaler Strukturen. Da EPD theoretisch mit jedem geladenen Objekt, Material oder Molekül möglich ist, ließe sich das Potenzial des 3D-Drucks durch eine Kombination mit EPD signifikant steigern. Prototypen könnten aus einer Vielzahl an Materialien in einem schnellen und kostengünstigen additiven Herstellungsverfahren entstehen, wodurch die Möglichkeit zum Einsatz als Massenproduktionsverfahren gegeben ist. Eine Nutzung der EPD als 3D-Druck-Verfahren ist jedoch nur möglich, wenn es gelingt, die Abscheidung der Partikel lokal zu fokussieren und somit den Aufbau der dreidimensionalen Struktur zu steuern und zu kontrollieren. In der vorliegenden Arbeit wird untersucht, ob lokale Abscheidung von keramischen Partikeln durch EPD realisierbar ist und welche Bedingungen dazu vorliegen müssen. Insbesondere werden die Bewegungen der geladenen Partikel im inhomogenen elektrischen Feld analysiert und der Einfluss der Polarität des Suspensionsmediums auf die Partikelbewegung und die Partikelablagerung in einer selbstentwickelten Mikro-Flusskammer untersucht. Im unpolaren Medium Cyclohexan steigt die Bewegungsgeschwindigkeit der Partikel linear mit der angelegten Spannung, respektive der elektrischen Feldstärke. Die Bewegungsrichtung der Partikel erfolgt entsprechend ihrer positiven Ladung in Richtung der Kathode. Die Partikel scheiden sich als stäbchenförmige Deposition verteilt auf der Kathodenoberfläche ab. Die Häufigkeit der Ablagerung ist dabei an der Elektrodenspitze, also im Bereich der höchsten Feldstärke am größten. Die Stabilisierung der Partikel in einem unpolaren Lösemittel wird durch eine Oberflächenbeschichtung mit verschiedenen, strukturähnlichen Dispergatoren realisiert. Alle verwendeten Dispergator-Partikel-Systeme zeigen näherungsweise gleiches elektrophoretisches Verhalten. In Wasser bewegen sich die positiv geladenen Partikel bei einer angelegten Spannung von unter 3 V entgegen der elektrostatischen Kräfte in Richtung Anode, deren Oberfläche sie jedoch nicht erreichen, da sie vorher abgelenkt werden. Somit erfolgt keine Abscheidung der Partikel auf keiner der beiden Elektroden. Ab einer Spannung von 3 V beginnen sich Partikel im polaren Medium in Form einer dendritischen Struktur an der Kathodenspitze abzuscheiden. Bei Spannungen von mehr als 17 V beginnt in Wasser eine sichtbare Bildung von Gasblasen an der Anodenoberfläche. Beim Abriss der Blasen von der Oberfläche wird die vorhandene dendritische Struktur zerstört. In Mischungen aus Ethanol und Cyclohexan wird die Spannung von 5 V konstant gehalten und das Mischungsverhältnis der beiden Lösemittel, und somit die Polarität der Suspension, variiert. Bereits bei 0,1 Vol.-% Ethanol-Anteil, sowie ab 30 Vol.-% Ethanol findet eine Partikelbewegung in Richtung der Anode, also entgegen der elektrostatischen Kräfte, statt. Da die Partikel die Anodenoberfläche aufgrund der repulsiven Wechselwirkungen nicht erreichen, findet keine Abscheidung statt. Nur bei einem Ethanol-Anteil von 7,5 Vol.-% bis etwa 30 Vol.-% bewegen sich die Partikel in Richtung Kathode, wo sie sich auch abscheiden. Die merkwürdigen Bewegungsphänomene der Partikel in der Mikro-Flusskammer konnten nicht mit Sicherheit aufgeklärt werden. Induced-charge electroosmotic flow oder andere elektrokinetische Effekte könnten wirken und so die elektrophoretische Partikelbewegung überlagern oder beeinflussen. Gezeigt werden konnte jedoch, dass eine lokale Abscheidung von Partikeln mittels EPD möglich ist. Dazu ist unter den beschriebenen experimentellen Bedingungen in Wasser eine Spannung im Bereich zwischen 3 V und 17 V nötig, um lokal eine dendritische Struktur abzuscheiden. In reinem Cyclohexan und für bestimmte Mischungsverhältnisse von Ethanol und Cyclohexan erfolgt die Abscheidung bei jedem untersuchten Spannungswert. Anders als in Wasser ist die stäbchenförmige Abscheidung jedoch an mehreren Stellen auf der Elektrodenoberfläche zu beobachten. Dennoch kann auch hier von einer lokalen Abscheidung gesprochen werden, da die Wahrscheinlichkeit für die Abscheidung an der Elektrodenspitze am größten ist, was nach einiger Zeit zu einer lokal erhöhten Schichtdicke führt. / Electrophoretic deposition (EPD) is a two-stage process in which charged particles first move in a suspension due to an electric field and then deposit on a surface. Due to the possibility of cost-effective mass production of quasi two-dimensional films on a surface as well as three-dimensional multi-layer systems, the EPD is of great interest to industry and medicine. In contrast, 3D printing is less suitable for mass production, but rather appropriate for producing prototypes in low quantities. Nevertheless, it is not less interesting for industry and medicine than EPD. 3D printing can be assigned to additive manufacturing processes in which locally supplied material assembles into a three-dimensional structure. Novel possibilities for building three-dimensional structures are conceivable by combining the two established methods. Since EPD is theoretically possible with any charged object, material or molecule, the potential of 3D printing could be significantly enhanced by combining it with EPD. Prototypes could be made from a variety of materials in a fast and inexpensive additive manufacturing process, allowing for the possibility of being used as a mass production process. However, the use of the EPD as a 3D-printing process as a rapid prototyping technique is only possible if the deposition of the particles can be focused and thus a local control of the structure is possible The present work investigates whether local deposition of ceramic particles by EPD is feasible and what experimental conditions must be met. Therefore, the trajectories of the charged particles in the inhomogeneous electric field are analyzed and the influence of the polarity of the suspension medium on particle movement and particle deposition is investigated in a self-developed micro-flow chamber. In cyclohexane as a nonpolar medium, the velocity of the particles increases linearly with the applied voltage, respectively the electric field strength. The particle movement in the direction of the cathode corresponds to their positive charge. The particles deposit as rod-shaped depositions distributed on the cathode surface. The possibility for a deposition is increasing with increasing electric field strength and is highest at the tip of the electrode. The stabilization of the particles in a nonpolar solvent is realized by coating the particle surface with various dispersants with related chemical structures. Analogous electrophoretic behavior is observed for all dispersant-particle systems. In water, the positively charged particles move towards the anode at a voltage of less than 3 V, contrary to the electrostatic forces, but they do not reach the surface of the electrode as they are deflected. Thus, no deposition of the particles takes place on either electrode. Above a voltage of 3 V, particles begin to deposit in a dendritic structure at the cathode tip. Above 17 V, noticeable gas bubbles begin to emerge at the anode surface, which destroy the existing dendritic deposition during their breakup from the surface. In mixtures of ethanol and cyclohexane, the voltage of 5 V is kept constant while the mixing ratio of the two solvents, and thus the polarity of the suspension, varies. Already at 0.1 vol% Ethanol content, as well as from 30 vol% Ethanol a particle movement is detected in the direction of the anode, i.e. contrary to the electrostatic forces. Since the particles do not reach the anode surface due to the repulsive interactions, no particle deposition takes place. Solely in the range of an ethanol content of 7.5 vol% to about 30 vol% the particles move in the direction of the cathode, where they also deposit. The peculiar movement phenomena of the particles in the micro-flow chamber could not be clarified with certainty. Induced-charge electroosmotic flow or other electrokinetic effects could be at work and thus overlay or influence the electrophoretic particle movement. However, it has been shown that local deposition of particles is possible by means of EPD. For this purpose and under the described experimental conditions, a voltage in the range of 3 V to 17 V is necessary in water to locally deposit a dendritic structure. In pure cyclohexane and for certain ratios in ethanol-cyclohexane mixtures, the deposition takes place at every voltage examined. In contrast to water, rod-shaped depositions can be observed at several points on the electrode surface. Nevertheless, this can be referred to as local deposition, since the probability of deposition is highest at the electrode tip, which leads to a locally increased layer thickness after a certain time.
6

Photodissoziation von Halogenwasserstoff- und orientierten Wasserstoff-Edelgas-Halogen-Molekülen in Clusterumgebungen / Photodissociation of hydrogen halide and oriented hydrogen-rare gas-halogen molecules in cluster environments

Nahler, Nils Hendrik 28 October 2002 (has links)
No description available.

Page generated in 0.0984 seconds