1 |
Thermodynamics of adsorption at the kaolinite/solution interfaceFoster, C. L. January 1986 (has links)
No description available.
|
2 |
Infrared characterisation of adsorbed species on platinum and silver surfacesWelch, Philip Colin Charles January 1995 (has links)
No description available.
|
3 |
Experimental and Modeling Study of Gas Adsorption in Metal-Organic Framework Coated on 3D Printed PlasticsTejesh Charles Dube (8812424) 08 May 2020 (has links)
<div>
<p>Metal-organic frameworks (MOFs) are a class of compounds consisting of metal ions or clusters coordinated to organic ligands in porous structure forms. MOFs have been proposed in use for gas adsorption, purification, and separation applications. This work combines MOFs with 3D printing technologies, in which 3D printed plastics serve as a mechanical structural support for MOFs powder, in order to realize a component design for gas adsorption. The objective of the thesis is to understand the gas adsorption behavior of MIL-101 (Cr) MOF coated on 3D printed PETG, a glycol modified version of polyethylene terephthalate, through a combined experimental and modeling study. The specific goals are: (1) synthesis of MIL-101 (Cr) MOFs; (2) nitrogen gas adsorption measurements and microstructure and phase characterization of the MOFs; (3) design and 3D printing of porous PETG substrate structures; (4) deposition of MOFs coating on the PETG substrates; and (5) Monte Carlo (MC) modeling of sorption isotherms of nitrogen and carbon dioxide in the MOFs.</p><p>The results show that pure MIL-101 (Cr) MOFs were successfully synthesized, as confirmed by the scanning electron microscopy (SEM) images and X-ray diffrac- tion (XRD), which are consistent with literature data. The Brunauer-Emmett-Teller (BET) surface area measurement shows that the MOFs samples have a high cover- age of nitrogen. The specific surface area of a typical MIL-101 (Cr) MOFs sample is 2716.83 m2/g. MIL-101 (Cr) also shows good uptake at low pressures in experimental tests for nitrogen adsorption. For the PETG substrate, disk-shape plastic samples with a controlled pore morphology were designed and fabricated using the fused de-</p><p> </p><p>position modeling (FDM) process. MOFs were coated on the PETG substrates using a layer-by-layer (LbL) assembly approach, up to 30 layers. The MOFs coating layer thicknesses increase with the number of deposition layers. The computational model illustrates that the MOFs show increased outputs in adsorption of nitrogen as pres- sure increases, similar to the trend observed in the adsorption experiment. The model also shows promising results for carbon dioxide uptake at low pressures, and hence the developed MOFs based components would serve as a viable candidate in gas adsorption applications.</p><div><br></div></div>
|
4 |
Theoretical investigation of electronic properties of atomic clusters in their free forms and adsorbed on functionalized graphene support / Investigations théoriques de propriétés électroniques de clusters atomiques sous leurs formes libre et adsorbée sur un substrat de graphène dopéLi, Rui 11 October 2016 (has links)
Les (sub)nanoclusters sont des agrégats d’atomes ou de molécules composés de quelques unités à quelques centaines d’unités. En raison de leur petite taille, ils peuvent avoir des propriétés électroniques, optiques, magnétiques et catalytiques très différentes par rapport au solide correspondant . D'un point de vue expérimental, il est encore très difficile de synthétiser des agrégats de taille calibrée. D'un point de vue théorique, le développement des puissances de calcul, des méthodes de calcul de structure électronique et des algorithmes de recherches globales de structures stables, permettent un calcul toujours plus précis de leurs propriétés physico-chimiques. L’étude théorique permet alors de déterminer de façon fiable les structures stables de ces systèmes qui président aux calculs de leurs propriétés . L’exemple qui illustre ce travail s’inspire du processus observé au sein des piles à combustible dans lequel le Platine (Pt) est couramment utilisé pour produire de l’énergie par oxydation du dihydrogène en favorisant notamment sa dissociation . L’objet de ce travail consiste à comparer la capacité des clusters de Platine de différentes tailles à adsorber la molécule de dihydrogène sous leur forme libre et adsorbée sur substrat. Le graphène , matériaux bidimensionnel cristallin formé de carbone est choisi dans ce travail en tant que substrat en raison de sa grande résistance mécanique et chimique. La première partie de ce travail est consacrée à la recherche d’éléments dopants qui vont permettent à la fois d’améliorer la capacité d’adsorption des clusters de Platine sur la surface et éviter leur migration. L’objectif est ici de proposer un substrat sur lequel peuvent être empêchés les phénomènes d’agglomération, de dissolution et de détachement du cluster qui ainsi limiteraient son efficacité catalytique . Des dopages de la surface, tel qu’ils sont réalisables expérimentalement , par l’Azote, le Bore et le Nitrure de Bore, par substitution atomique et avec ou sans considération préalable de lacunes, ont été étudiés. La seconde partie correspond à l’implémentation dans le code GSAM (Global Search Algorithm of Minima - algorithme de recherche globale de minima) développé au laboratoire , , des éléments qui permettent la recherche de structures de plus basse énergie de clusters moléculaires adsorbés sur substrat, tels que les systèmes [H2-Ptn-Graphène dopé] de cet exemple. La troisième partie concerne l’illustration de la fiabilité de la méthode de recherche globale employée et de la qualité de quelques méthodes de calcul de l’énergie moléculaire (DFT et GUPTA) vis-à-vis de résultats mentionnés dans la littérature sur les clusters de Platine. La dernière partie comporte l’investigation structurale des systèmes [H2-Ptn] et [H2-Ptn-Graphène dopé] pour différentes tailles de clusters allant de n=6 à n=20. La variation de l’énergie d’adsorption de H2 sur les clusters libres et supportés ainsi que celle du cluster moléculaire sur le substrat en fonction de la taille est reportée. / A sub-nanometer sized metal cluster consists of only several to tens of atoms. Due to its small size and quantum effects, it can have very specific electronic, optical, magnetic and catalytic properties as compared with their bulk behaviors . From an experimental point of view, it is still a big challenge to realize size-controlled synthesis for (sub) nanoclusters. From a theoretical point of view, benefiting from the development of faster high-performance computational sources, more efficient electronic structure modelling software and more reliable global search methods for the determination of the most stable structures, the chemical and physical properties of clusters can be determinate more accurately. As it is experimentally a big challenge to realize size-controlled synthesis for (sub) nanoclusters, theoretical studies can provide detailed information on their geometric structure, electronic structure, as well as adsorption and reaction properties . The example chosen to be treated in this study is inspired by the fuel cell, in which the Platinum (Pt) is a typical and most commonly used precious metal catalyst for the production of energy by the oxidation of dihydrogene . Graphene is a recently discovered 2D carbon net structure, has several special properties, such as: low weight, high strength, high surface area, high electrical conductivity, etc. With these properties and their novel combinations, graphene might prove a promising candidate to be used as catalyst supports. The first part of this study is devoted to the search of the doping elements which permit both enhance the adsorption capacity of Pt clusters on the surface and prevent their migration. The aim here is propose one substrate which can avoid the problems of cluster agglomeration, dissolution and detachment, which reduce the performance of the catalysts . The ways of doping of the surface, which have already been experimentally realized , such as Nitrogen, Boron, and N-B patches substitution of Carbon atoms with or without introducing the vacancy on the pristine graphene, are studied. The second part corresponds to the implementation of some new features into the code GSAM (Global Search Algorithm of Minima) developed in our laboratory , , , which permit the search of the most stable structures of the molecular clusters adsorbed on substrate, such as the complex systems of [H2-Ptn-doped Graphene]. The third part is to evaluate the reliabilities of the global search method used, as well as the DFT and the empirical (GUPTA) potential energy surface. Thus, the main discussion appears as a comparison with the results of the literature concerning the Pt clusters. The fourth part consists of the structural investigation of [H2-Ptn] and [H2-Ptn-doped Graphene] systems for different sizes of Pt clusters with n=6 to n=20. The variation of the adsorption energy of H2 on the free and supported Ptn clusters, and the adsorption energy of (H2+Ptn) system on the surface with respect to the size of the cluster is discussed.
|
5 |
Sum frequency generation study of CO adsorbed on palladium single crystal and nanoparticles : adsorption and catalytic oxidation as a function of sizeWang, Jijin 05 December 2013 (has links) (PDF)
The CO reaction on metals is of great interest experimentally and theoretically because it serves as a model system to understand molecular chemisorption and catalyzed reactions on metals. This thesis aims at progressing along the general trends of surface science: bridging the pressure and material gaps in the study of catalysts. Sum Frequency Generation (SFG) is at the heart of this work. It involves a nonlinear optical process with an IR pulse induced coherent first-order polarization up-converted by a visible pulse into a second-order polarization at the sum frequency. In this thesis it is used to record CO vibrational spectra on the Pd nanoparticles (NP)/MgO/Ag(100) to understand the adsorption and oxidation thanks to its specific advantages in surface science: sensitivity and surface selectivity. The questions proposed are the possible roles of the adsorption sites which only exist on the NPs, the effect of the size of NPs and the presence of oxygen on the CO adsorption and catalytic reactivity, the effect of adsorption of oxygen (from 'normal' - dissociative chemisorption to 'sub-surface'), the variation of reactivity of CO in the different sites when pressure and temperature increase. (1) We have studied CO adsorption on Pd(100) as a reference. Below a CO coverage of 0.5 ML SFG results confirm previous IRAS studies. Above 0.5 ML, we have observed in much more details than previously two vibrational bands assigned to CO at compressed and uncompressed bridge sites, of which we have measured the frequency and intensity and the decoherence time T₂ as a function of coverage. (2) Pd NP size effect on CO adsorption is studied (from Pd(100) to particles with about 300 atoms). At pressures below 10⁻³ mbar the CO spectra on a coalesced layer and on large NPs are dominated by the same bridge band as on Pd(100). The CO singleton frequency decreases with coverage, revealing the evolution of chemisorption with size. DFT calculations done at ENS Lyon reveal that the main mechanism is the strain induced by the substrate which increases the Pd-Pd bondlength, favors electron back donation to CO, weakens the CO bond and probably reinforce the CO-metal bond. (3) Because of a limit of our maximal temperature, we have to study the CO catalytic oxidation in an excess of oxygen to avoid self-poisoning by CO. The results strongly suggest that bridge sites are the key sites in catalysis in our experimental condition. However, while a fraction of bridge sites are more reactive on NPs, a large fraction of them seem less reactive with respect to Pd(100). The reactivity of CO on (100) facet decreases at smaller NP size. It emerges the ideal that the reaction proceeds by the most reactive sites, and that the other sites are only reservoir in reactivity, if the diffusion between sites are high enough. Oxygen modifies the adsorption of co-reactants. In the case of CO + O / Pd NPs / MgO, below 10⁻⁴ mbar oxygen does not seem to influence significantly CO adsorption; between 10⁻³ and 10⁻¹ mbar the spectroscopic signature of CO compression disappears, and above 1 mbar a new class of a top sites appears, suggesting that some oxygen species (perhaps "subsurface") favors CO adsorption on linear sites. A pump-probe experiment has been done to compare the effect of pump on different adsorption sites. All this confirms the interest of SFG vibrational spectroscopy for catalysis. An additional contribution of this thesis to SFG is the study of the spectro-temporal aspects of SFG emission. SFG spectra containing several bands are modeled in details based on an ODT/Au system and compared to experimental spectra, showing that in SFG spectra are affected by the spectro-temporal shape of the visible laser. The standard deconvolution method used in the literature is only approximate. Accurate spectro-temporal spectrum modeling is required to evaluate precisely the relative intensities when several bands are present.
|
6 |
Sum frequency generation study of CO adsorbed on palladium single crystal and nanoparticles : adsorption and catalytic oxidation as a function of size / Etude par génération de somme de fréquences de CO adsorbé sur monocristal et sur nanoparticules de palladium : adsorption et oxydation catalytique en fonction de la tailleWang, Jijin 05 December 2013 (has links)
La réaction de CO sur métaux est d'un grand intérêt, car il sert de système modèle pour comprendre la chimisorption et les réactions catalytiques sur les métaux. Cette thèse se place dans la démarche générale de la science des surfaces de franchir les « fossés » de pression et de materiaux pour l’étude de la catalyse. La Génération de Somme de Fréquences (SFG) est au cœur de ce travail. Elle implique un processus optique non linéaire créé par une impulsion IR qui induit une polarisation cohérente du premier ordre, convertie par une impulsion visible en une polarisation du second ordre à la fréquence somme. La SFG est utilisée pour mesurer les spectres vibrationnels de CO sur Pd nanoparticule (NP)/MgO/Ag(100) grâce à des avantages spécifiques en science de la surface de SFG : sensibilité, sélectivité de surface. Les questions posées sont les rôles possibles des sites d'adsorption qui n'existent que sur les NP, l'effet de taille des NP, l'adsorption de l'oxygène (de « normal » - chimisorption dissociative - à « sub-surface »), sur l'adsorption de CO et la réactivité catalytique, la variation de la réactivité de CO dans les différents sites lors de l'augmentation de la pression et de la température. (1) Nous avons étudié l’adsorption de CO sur Pd (100) comme une référence. En dessous d’une couverture de 0.5 ML de CO, les résultats de SFG confirment les études IRAS antérieures. Au-dessus de 0.5 ML, nous avons observé deux bandes vibrationnelles attribuées à CO dans des sites pontés « comprimés » et « non comprimés », dont nous avons mesuré la fréquence et l’intensité en fonction de la couverture, ainsi que le temps de décohérence T₂. (2) L’effet de taille des NP de Pd sur l'adsorption de CO a été observé (depuis Pd(100) à NP d’environ 300 atomes). Aux pressions ≤ 10⁻³ mbar, les spectres de CO sur une couche coalescées et sur des NP larges sont dominés par la même bande de sites pontés que sur Pd (100). La fréquence « singleton » de CO diminue avec la taille des NP, ce qui révèle l'évolution de la chimisorption avec la taille des NP. Des calculs DFT faits à l'ENS Lyon révèlent que le mécanisme principal est la contrainte induite par le substrat qui augmente la longueur de liaison Pd-Pd, favorise la rétrodonation d’électrons vers CO, affaiblit la liaison interne de CO et probablement renforce la liaison CO-métal. (3) Pour CO oxidation catalytic, les résultats suggèrent fortement que les sites pontés sont les sites clé dans la catalyse dans nos conditions expérimentales. Cependant, tandis qu'une fraction des sites pontés sont plus réactifs sur les NP, une grande fraction sont moins réactifs par rapport à Pd(100). La réactivité de CO sur les facettes (100) diminue à plus petite taille des NP. Il se dégage l’idée que la réaction procède par les sites les plus réactifs, et que les autres sites servent seulement de réservoirs en réactifs, à condition que la diffusion entre sites soit suffisamment élevée. L’oxygène modifie l'adsorption de co-réactifs. Dans le cas de CO+O/NP de Pd/MgO, au-dessus de 1 mbar, une nouvelle classe de sites linéaires apparaît, qui est probablement due à "sub-surface" oxygen. Une expérience pompe-sonde a été faite pour comparer l’effet de pompe sur les différents sites d’adsorption. Tous ces résultats confirment l'intérêt de spectroscopie vibrationnelle de SFG pour l’étude de la catalyse. Une contribution supplémentaire de cette thèse est l'étude des aspects spectro-temporels de l’émission SFG. Des spectres SFG qui contiennent plusieurs bandes sont modélisés en détail dans le cas du système modèle ODT/Au, et comparés à des spectres expérimentaux. Les spectres SFG sont affectées par la forme spectro-temporel du laser visible. La comparaison montre que l’interprétation quantitative des intensités relatives des spectres SFG obtenus avec des impulsions femtosecondes nécessite une analyse spectro-temporelle et pas seulement spectrale. La méthode de déconvolution standard utilisée dans la littérature est approximative. / The CO reaction on metals is of great interest experimentally and theoretically because it serves as a model system to understand molecular chemisorption and catalyzed reactions on metals. This thesis aims at progressing along the general trends of surface science: bridging the pressure and material gaps in the study of catalysts. Sum Frequency Generation (SFG) is at the heart of this work. It involves a nonlinear optical process with an IR pulse induced coherent first-order polarization up-converted by a visible pulse into a second-order polarization at the sum frequency. In this thesis it is used to record CO vibrational spectra on the Pd nanoparticles (NP)/MgO/Ag(100) to understand the adsorption and oxidation thanks to its specific advantages in surface science: sensitivity and surface selectivity. The questions proposed are the possible roles of the adsorption sites which only exist on the NPs, the effect of the size of NPs and the presence of oxygen on the CO adsorption and catalytic reactivity, the effect of adsorption of oxygen (from ‘normal’ – dissociative chemisorption to ‘sub-surface’), the variation of reactivity of CO in the different sites when pressure and temperature increase. (1) We have studied CO adsorption on Pd(100) as a reference. Below a CO coverage of 0.5 ML SFG results confirm previous IRAS studies. Above 0.5 ML, we have observed in much more details than previously two vibrational bands assigned to CO at compressed and uncompressed bridge sites, of which we have measured the frequency and intensity and the decoherence time T₂ as a function of coverage. (2) Pd NP size effect on CO adsorption is studied (from Pd(100) to particles with about 300 atoms). At pressures below 10⁻³ mbar the CO spectra on a coalesced layer and on large NPs are dominated by the same bridge band as on Pd(100). The CO singleton frequency decreases with coverage, revealing the evolution of chemisorption with size. DFT calculations done at ENS Lyon reveal that the main mechanism is the strain induced by the substrate which increases the Pd-Pd bondlength, favors electron back donation to CO, weakens the CO bond and probably reinforce the CO-metal bond. (3) Because of a limit of our maximal temperature, we have to study the CO catalytic oxidation in an excess of oxygen to avoid self-poisoning by CO. The results strongly suggest that bridge sites are the key sites in catalysis in our experimental condition. However, while a fraction of bridge sites are more reactive on NPs, a large fraction of them seem less reactive with respect to Pd(100). The reactivity of CO on (100) facet decreases at smaller NP size. It emerges the ideal that the reaction proceeds by the most reactive sites, and that the other sites are only reservoir in reactivity, if the diffusion between sites are high enough. Oxygen modifies the adsorption of co-reactants. In the case of CO + O / Pd NPs / MgO, below 10⁻⁴ mbar oxygen does not seem to influence significantly CO adsorption; between 10⁻³ and 10⁻¹ mbar the spectroscopic signature of CO compression disappears, and above 1 mbar a new class of a top sites appears, suggesting that some oxygen species (perhaps “subsurface”) favors CO adsorption on linear sites. A pump-probe experiment has been done to compare the effect of pump on different adsorption sites. All this confirms the interest of SFG vibrational spectroscopy for catalysis. An additional contribution of this thesis to SFG is the study of the spectro-temporal aspects of SFG emission. SFG spectra containing several bands are modeled in details based on an ODT/Au system and compared to experimental spectra, showing that in SFG spectra are affected by the spectro-temporal shape of the visible laser. The standard deconvolution method used in the literature is only approximate. Accurate spectro-temporal spectrum modeling is required to evaluate precisely the relative intensities when several bands are present.
|
7 |
Photodissoziation von Halogenwasserstoff- und orientierten Wasserstoff-Edelgas-Halogen-Molekülen in Clusterumgebungen / Photodissociation of hydrogen halide and oriented hydrogen-rare gas-halogen molecules in cluster environmentsNahler, Nils Hendrik 28 October 2002 (has links)
No description available.
|
Page generated in 0.0672 seconds