• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 132
  • 9
  • 9
  • 5
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 194
  • 70
  • 61
  • 57
  • 57
  • 43
  • 40
  • 40
  • 39
  • 36
  • 36
  • 36
  • 32
  • 28
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

A Bridge between Graph Neural Networks and Transformers: Positional Encodings as Node Embeddings

Manu, Bright Kwaku 01 December 2023 (has links) (PDF)
Graph Neural Networks and Transformers are very powerful frameworks for learning machine learning tasks. While they were evolved separately in diverse fields, current research has revealed some similarities and links between them. This work focuses on bridging the gap between GNNs and Transformers by offering a uniform framework that highlights their similarities and distinctions. We perform positional encodings and identify key properties that make the positional encodings node embeddings. We found that the properties of expressiveness, efficiency and interpretability were achieved in the process. We saw that it is possible to use positional encodings as node embeddings, which can be used for machine learning tasks such as node classification, graph classification, and link prediction. We discuss some challenges and provide future directions.
122

Extending a Text Classifier to Multiple Languages / Utöka en textklassificeringsmodell till flera språk

Byström, Albin January 2021 (has links)
This thesis explores the possibility to extend monolingual and bilingual text classifiers to multiple languages. Two different language models are explored, language aligned word embeddings and a transformer model. The goal was to take a classifier based on Swedish and English samples and extend it to Danish, German, and Finnish samples. The result shows that extending a text classifier by word embeddings alignment or by finetuning a multilingual transformer model is possible but with varying accuracy depending on the language. / Denna avhandling undersöker möjligheten att utvidga enspråkiga och tvåspråkiga textklassificatorer till flera språk. Två olika språkmodeller utforskas, justeras ordinbäddningar och en transformatormodell. Målet var att ta en klassificerare baserad på svenska och engelska texter och utvidga den till danska, tyska och finska texter. Resultatet visar att det är möjligt att utöka en textklassificering med ordinbäddning eller genom att finjustera en flerspråkig transformatormodell, men träffsäkerheten varierar beroende på språk.
123

Readability: Man and Machine : Using readability metrics to predict results from unsupervised sentiment analysis / Läsbarhet: Människa och maskin : Användning av läsbarhetsmått för att förutsäga resultaten från oövervakad sentimentanalys

Larsson, Martin, Ljungberg, Samuel January 2021 (has links)
Readability metrics assess the ease with which human beings read and understand written texts. With the advent of machine learning techniques that allow computers to also analyse text, this provides an interesting opportunity to investigate whether readability metrics can be used to inform on the ease with which machines understand texts. To that end, the specific machine analysed in this paper uses word embeddings to conduct unsupervised sentiment analysis. This specification minimises the need for labelling and human intervention, thus relying heavily on the machine instead of the human. Across two different datasets, sentiment predictions are made using Google’s Word2Vec word embedding algorithm, and are evaluated to produce a dichotomous output variable per sentiment. This variable, representing whether a prediction is correct or not, is then used as the dependent variable in a logistic regression with 17 readability metrics as independent variables. The resulting model has high explanatory power and the effects of readability metrics on the results from the sentiment analysis are mostly statistically significant. However, metrics affect sentiment classification in the two datasets differently, indicating that the metrics are expressions of linguistic behaviour unique to the datasets. The implication of the findings is that readability metrics could be used directly in sentiment classification models to improve modelling accuracy. Moreover, the results also indicate that machines are able to pick up on information that human beings do not pick up on, for instance that certain words are associated with more positive or negative sentiments. / Läsbarhetsmått bedömer hur lätt eller svårt det är för människor att läsa och förstå skrivna texter. Eftersom nya maskininlärningstekniker har utvecklats kan datorer numera också analysera texter. Därför är en intressant infallsvinkel huruvida läsbarhetsmåtten också kan användas för att bedöma hur lätt eller svårt det är för maskiner att förstå texter. Mot denna bakgrund använder den specifika maskinen i denna uppsats ordinbäddningar i syfte att utföra oövervakad sentimentanalys. Således minimeras behovet av etikettering och mänsklig handpåläggning, vilket resulterar i en mer djupgående analys av maskinen istället för människan. I två olika dataset jämförs rätt svar mot sentimentförutsägelser från Googles ordinbäddnings-algoritm Word2Vec för att producera en binär utdatavariabel per sentiment. Denna variabel, som representerar om en förutsägelse är korrekt eller inte, används sedan som beroende variabel i en logistisk regression med 17 olika läsbarhetsmått som oberoende variabler. Den resulterande modellen har högt förklaringsvärde och effekterna av läsbarhetsmåtten på resultaten från sentimentanalysen är mestadels statistiskt signifikanta. Emellertid är effekten på klassificeringen beroende på dataset, vilket indikerar att läsbarhetsmåtten ger uttryck för olika lingvistiska beteenden som är unika till datamängderna. Implikationen av resultaten är att läsbarhetsmåtten kan användas direkt i modeller som utför sentimentanalys för att förbättra deras prediktionsförmåga. Dessutom indikerar resultaten också att maskiner kan plocka upp på information som människor inte kan, exempelvis att vissa ord är associerade med positiva eller negativa sentiment.
124

Identifying New Fault Types Using Transformer Embeddings

Karlsson, Mikael January 2021 (has links)
Continuous integration/delivery and deployment consist of many automated tests, some of which may fail leading to faulty software. Similar faults may occur in different stages of the software production lifecycle and it is necessary to identify similar faults and cluster them into fault types in order to minimize troubleshooting time. Pretrained transformer based language models have been proven to achieve state of the art results in many natural language processing tasks like measuring semantic textual similarity. This thesis aims to investigate whether it is possible to cluster and identify new fault types by using a transformer based model to create context aware vector representations of fault records, which consists of numerical data and logs with domain specific technical terms. The clusters created were compared against the clusters created by an existing system, where log files are grouped by manual specified filters. Relying on already existing fault types with associated log data, this thesis shows that it is possible to finetune a transformer based model for a classification task in order to improve the quality of text embeddings. The embeddings are clustered by using density based and hierarchical clustering algorithms with cosine distance. The results show that it is possible to cluster log data and get comparable results to the existing manual system, where the cluster similarity was assessed with V-measure and Adjusted Rand Index. / Kontinuerlig integration består automatiserade tester där det finns risk för att några misslyckas vilket kan leda till felaktig programvara. Liknande fel kan uppstå under olika faser av en programvarans livscykel och det är viktigt att identifiera och gruppera olika feltyper för att optimera felsökningsprocessen. Det har bevisats att språkmodeller baserade på transformatorarkitekturen kan uppnå höga resultat i många uppgifter inom språkteknologi, inklusive att mäta semantisk likhet mellan två texter. Detta arbete undersöker om det är möjligt att gruppera och identifiera nya feltyper genom att använda en transformatorbaserad språkmodell för att skapa numeriska vektorer av loggtext, som består av domänspecifika tekniska termer och numerisk data. Klustren jämförs mot redan existerande grupperingar som skapats av ett befintligt system där feltyper identifieras med manuellt skrivna filter. Det här arbetet visar att det går att förbättra vektorrepresenationerna skapade av en språkmodell baserad på transformatorarkitekturen genom att tilläggsträna modellen för en klassificeringsuppgift. Vektorerna grupperas med hjälp av densitetsbaserade och hierarkiska klusteralgoritmer. Resultaten visar att det är möjligt att skapa vektorer av logg-texter med hjälp av en transformatorbaserad språkmodell och få jämförbara resultat som ett befintligt manuellt system, när klustren evaluerades med V-måttet och Adjusted Rand Index.
125

Finding Street Gang Member Profiles on Twitter

Balasuriya, Lakshika January 2017 (has links)
No description available.
126

Exploring Language Descriptions through Vector Space Models

Aleksandrova, Anastasiia January 2024 (has links)
The abundance of natural languages and the complexities involved in describingtheir structures pose significant challenges for modern linguists, not only in documentation but also in the systematic organization of knowledge. Computational linguisticstools hold promise in comprehending the “big picture”, provided existing grammars aredigitized and made available for analysis using state-of-the-art language models. Extensive efforts have been made by an international team of linguists to compile such aknowledge base, resulting in the DReaM corpus – a comprehensive dataset comprisingtens of thousands of digital books containing multilingual language descriptions.However, there remains a lack of tools that facilitate understanding of concise language structures and uncovering overlooked topics and dialects. This thesis representsa small step towards elucidating the broader picture by utilizing a subset of the DReaMcorpus as a vector space capable of capturing genetic ties among described languages.To achieve this, we explore several encoding algorithms in conjunction with varioussegmentation strategies and vector summarization approaches for generating bothmonolingual and cross-lingual feature representations of selected grammars in Englishand Russian.Our newly proposed sentence-facets TF-IDF model shows promise in unsupervisedgeneration of monolingual representations, conveying sufficient signal to differentiate historical linguistic relations among 484 languages from 26 language familiesbased on their descriptions. However, the construction of a cross-lingual vector spacenecessitates further exploration of advanced technologies.
127

Continuous Appearance for Material Textures with Neural Rendering : Using multiscale embeddings for efficient rendering of material textures at any scale in 3D engines. / Kontinuerligt Utseende för Materialtexturer med Neural Rendering : Användning av flerskaliga inbäddningar för effektiv rendering av materialtexturer i alla skalor i 3D-motorer.

de Oliveira, Louis January 2024 (has links)
Neural Rendering has recently shown potential for real-time applications such as video games. However, current state of the art Neural Rendering approaches still suffer from a high memory footprint and often require multiple inferences of large neural networks to produce a properly filtered output. This cost associated to filtering the output of Neural Rendering models makes real-time multiscale rendering difficult. In this work, we propose a neural architecture based on multiscale embeddings that take advantage of current rasterization pipelines to produce a filtered output in a single evaluation, allowing for a continuous appearance through scale using a very small neural network. The model is trained directly on a filtered signal in order to learn a continuous representation of the material instead of relying on a post-processing step. The proposed architecture enables efficient sampling on GPU both in texel position and in level of detail, and closely reproduces material textures while drastically reducing their memory footprint. The results show that this approach is a viable candidate for integration in rendering pipelines, as it can be inferred efficiently in regular fragment shaders and on consumer-level hardware inducing less than 1 millisecond of overhead compared to traditional pipelines while producing an output of similar quality with a 33% reduction in memory footprint. The model also produces a smooth reconstruction through scale, free of artifacts and visual discontinuities that would typically be observed for an unfiltered output. / Neural rendering har på senare år visat potential i realtidsapplikationer som t ex inom dataspel. Dessvärre begränsas dagens state-of-the-art metoder inom neural rendering av hög minnesanvändning och kräver ofta att multipla inferenser görs av relativt stora neuronnät för att skapa adekvat filtrerade resultat. Det är därför svårt att direkt tillämpa neural rendering i spelutveckling. I detta arbete föreslås en neural arkitektur som baserar sig på multiscale embeddings som tar tillvara på egenskaperna hos dagens renderingspipelines för att producera adekvat filtrerade resultat med endast en inferens, vilket möjliggör kontinuerliga utseendeegenskaper genom skalning med ett mycket litet neuronnät. Modellen tränas direkt på en filtrerad signal för att lära en kontinuerlig representation av materialet istället för att behöva ett separat post-processingsteg. Den föreslagna arkitekturen möjliggör effektiv sampling på GPU både i texelposition och level of detail, och reproducerar materialtexturerna väl, samtidigt som den reducerar minnesanvändningen drastiskt. Resultaten visar att denna metod är en gångbar kandidat för integration i en renderingspipeline, eftersom den kan inferreras effektivt i en vanlig fragmentsshader på konsumenthårdvara med under en millisekunds tidstillägg jämfört med en traditionell pipeline utan avkall på kvalitet med 33% lägre minnesanvändning. Modellen producerar också en slät rekonstruktion genom skalning, fri från artefakter och visuella diskontinuiteter som annars ofta syns i ett ofiltrerat resultat.
128

Discovering Implant Terms in Medical Records

Jerdhaf, Oskar January 2021 (has links)
Implant terms are terms like "pacemaker" which indicate the presence of artifacts in the body of a human. These implant terms are key to determining if a patient can safely undergo Magnetic Resonance Imaging (MRI). However, to identify these terms in medical records is time-consuming, laborious and expensive, but necessary for taking the correct precautions before an MRI scan. Automating this process is of great interest to radiologists as it ideally saves time, prevents mistakes and as a result saves lives. The electronic medical records (EMR) contain the documented medical history of a patient, including any implants or objects that an individual would have inside their body. Information about such objects and implants are of great interest when determining if and how a patient can be scanned using MRI. This information is unfortunately not easily extracted through automatic means. Due to their sparse presence and the unusual structure of medical records compared to most written text, makes it very difficult to automate using simple means. By leveraging the recent advancements in Artificial Intelligence (AI), this thesis explores the ability to identify and extract such terms automatically in Swedish EMRs. For the task of identifying implant terms in medical records a generally trained Swedish Bidirectional Encoder Representations from Transformers (BERT) model is used, which is then fine-tuned on Swedish medical records. Using this model a variety of approaches are explored two of which will be covered in this thesis. Using this model a variety of approaches are explored, namely BERT-KDTree, BERT-BallTree, Cosine Brute Force and unsupervised NER. The results show that BERT-KDTree and BERT-BallTree are the most rewarding methods. Results from both methods have been evaluated by domain experts and appear promising for such an early stage, given the difficulty of the task. The evaluation of BERT-BallTree shows that multiple methods of extraction may be preferable as they provide different but still useful terms. Cosine brute force is deemed to be an unrealistic approach due to computational and memory requirements. The NER approach was deemed too impractical and laborious to justify for this study, yet is potentially useful if not more suitable given a different set of conditions and goals. While there is much to be explored and improved, these experiments are a clear indication that automatic identification of implant terms is possible, as a large number of implant terms were successfully discovered using automated means.
129

Learning representations for Information Retrieval

Sordoni, Alessandro 03 1900 (has links)
La recherche d'informations s'intéresse, entre autres, à répondre à des questions comme: est-ce qu'un document est pertinent à une requête ? Est-ce que deux requêtes ou deux documents sont similaires ? Comment la similarité entre deux requêtes ou documents peut être utilisée pour améliorer l'estimation de la pertinence ? Pour donner réponse à ces questions, il est nécessaire d'associer chaque document et requête à des représentations interprétables par ordinateur. Une fois ces représentations estimées, la similarité peut correspondre, par exemple, à une distance ou une divergence qui opère dans l'espace de représentation. On admet généralement que la qualité d'une représentation a un impact direct sur l'erreur d'estimation par rapport à la vraie pertinence, jugée par un humain. Estimer de bonnes représentations des documents et des requêtes a longtemps été un problème central de la recherche d'informations. Le but de cette thèse est de proposer des nouvelles méthodes pour estimer les représentations des documents et des requêtes, la relation de pertinence entre eux et ainsi modestement avancer l'état de l'art du domaine. Nous présentons quatre articles publiés dans des conférences internationales et un article publié dans un forum d'évaluation. Les deux premiers articles concernent des méthodes qui créent l'espace de représentation selon une connaissance à priori sur les caractéristiques qui sont importantes pour la tâche à accomplir. Ceux-ci nous amènent à présenter un nouveau modèle de recherche d'informations qui diffère des modèles existants sur le plan théorique et de l'efficacité expérimentale. Les deux derniers articles marquent un changement fondamental dans l'approche de construction des représentations. Ils bénéficient notamment de l'intérêt de recherche dont les techniques d'apprentissage profond par réseaux de neurones, ou deep learning, ont fait récemment l'objet. Ces modèles d'apprentissage élicitent automatiquement les caractéristiques importantes pour la tâche demandée à partir d'une quantité importante de données. Nous nous intéressons à la modélisation des relations sémantiques entre documents et requêtes ainsi qu'entre deux ou plusieurs requêtes. Ces derniers articles marquent les premières applications de l'apprentissage de représentations par réseaux de neurones à la recherche d'informations. Les modèles proposés ont aussi produit une performance améliorée sur des collections de test standard. Nos travaux nous mènent à la conclusion générale suivante: la performance en recherche d'informations pourrait drastiquement être améliorée en se basant sur les approches d'apprentissage de représentations. / Information retrieval is generally concerned with answering questions such as: is this document relevant to this query? How similar are two queries or two documents? How query and document similarity can be used to enhance relevance estimation? In order to answer these questions, it is necessary to access computational representations of documents and queries. For example, similarities between documents and queries may correspond to a distance or a divergence defined on the representation space. It is generally assumed that the quality of the representation has a direct impact on the bias with respect to the true similarity, estimated by means of human intervention. Building useful representations for documents and queries has always been central to information retrieval research. The goal of this thesis is to provide new ways of estimating such representations and the relevance relationship between them. We present four articles that have been published in international conferences and one published in an information retrieval evaluation forum. The first two articles can be categorized as feature engineering approaches, which transduce a priori knowledge about the domain into the features of the representation. We present a novel retrieval model that compares favorably to existing models in terms of both theoretical originality and experimental effectiveness. The remaining two articles mark a significant change in our vision and originate from the widespread interest in deep learning research that took place during the time they were written. Therefore, they naturally belong to the category of representation learning approaches, also known as feature learning. Differently from previous approaches, the learning model discovers alone the most important features for the task at hand, given a considerable amount of labeled data. We propose to model the semantic relationships between documents and queries and between queries themselves. The models presented have also shown improved effectiveness on standard test collections. These last articles are amongst the first applications of representation learning with neural networks for information retrieval. This series of research leads to the following observation: future improvements of information retrieval effectiveness has to rely on representation learning techniques instead of manually defining the representation space.
130

On generators, relations and D-simplicity of direct products, Byleen extensions, and other semigroup constructions

Baynes, Samuel January 2015 (has links)
In this thesis we study two different topics, both in the context of semigroup constructions. The first is the investigation of an embedding problem, specifically the problem of whether it is possible to embed any given finitely presentable semigroup into a D-simple finitely presentable semigroup. We consider some well-known semigroup constructions, investigating their properties to determine whether they might prove useful for finding a solution to our problem. We carry out a more detailed study into a more complicated semigroup construction, the Byleen extension, which has been used to solve several other embedding problems. We prove several results regarding the structure of this extension, finding necessary and sufficient conditions for an extension to be D-simple and a very strong necessary condition for an extension to be finitely presentable. The second topic covered in this thesis is relative rank, specifically the sequence obtained by taking the rank of incremental direct powers of a given semigroup modulo the diagonal subsemigroup. We investigate the relative rank sequences of infinite Cartesian products of groups and of semigroups. We characterise all semigroups for which the relative rank sequence of an infinite Cartesian product is finite, and show that if the sequence is finite then it is bounded above by a logarithmic function. We will find sufficient conditions for the relative rank sequence of an infinite Cartesian product to be logarithmic, and sufficient conditions for it to be constant. Chapter 4 ends with the introduction of a new topic, relative presentability, which follows naturally from the topic of relative rank.

Page generated in 0.0549 seconds