• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 13
  • 12
  • 9
  • 8
  • 5
  • 4
  • 2
  • 1
  • Tagged with
  • 151
  • 29
  • 25
  • 20
  • 19
  • 16
  • 15
  • 15
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Evaluation of the application uniformity of subsurface drip distribution systems

Weynand, Vance Leo 30 September 2004 (has links)
The goal of this research was to evaluate the application uniformity of subsurface drip distribution systems and the recovery of emitter flow rates. Emission volume in the field, and laboratory measured flow rates were determined for emitters from three locations. Additionally, the effects of lateral orientation with respect to slope on emitter plugging was evaluated. Two different emitters were tested to evaluate slope effects on emitter plugging (type Y and Z). The emitters were alternately spliced together and installed in an up and down orientation on slopes of 0, 1, 2 and 4% and along the contour on slopes of 1 and 2%. The emitters were covered with soil and underwent a simulated year of dosing cycles, and then flushed with a flushing velocity of 0.6 m/s. Initial flow rates for the two emitter types were 2.38 L/hr with a C.V. of 0.07. There was no significant difference in flow rates among slopes for type Y emitters, but there was a significant difference between the 1% and 2 % contour slopes for type Z emitters. Application uniformity of three different laterals at each site was evaluated. Sections of the lateral from the beginning, middle and end were excavated and emission volumes were recorded for each emitter. Application uniformity of laterals ranged from 48.69 to 9.49%, 83.55 to 72.60%, and 44.41 to 0% for sites A, B, and C, respectively. Mean emitter flow rate was 2.21, 2.24, and 2.56 L/hr for sites A, B, and C, respectively under laboratory conditions. Application uniformity under laboratory conditions ranged from 70.97 to 14.91%, 86.67 to 79.99%, and 85.04 to 0.00% for sites A, B, and C, respectively. A flushing velocity of 0.15 m/s with no chlorination, shock chlorination of 3400 mg/L and flushing velocity of 0.15 m/s, and shock chlorination of 3400 mg/L and flushing velocity of 0.6 m/s treatment regiments were applied to all laterals collected to assess emitter flow rate recovery to the nominal flow rate published by the manufacturer. All laterals showed an increase in the number of emitters within 10% of the published nominal flow rate.
12

Identification of cellular handsets through radio frequency signature extraction on an FPGA platform / Johannes Petrus Hattingh

Hattingh, Johannes Petrus January 2015 (has links)
Specific emitter identification refers to the process of performing identification of radio frequency transmitters by exploiting unique variations in emitted signals, caused by hardware variations. In previous research, specific emitter identification was successfully performed on GSM handsets. However, no research has been done on the implementation of specific emitter identification of GSM handsets on an FPGA platform. This study focuses on feature extraction and identification algorithms, as well as the implementation of the identification algorithm on an FPGA. During this study, phase modulation error was used, as previous research indicated that phase modulation error is an effective feature set for identification purposes. As the implementation of a classification algorithm on an FPGA was required, a trade-off between complexity and feasibility needed to be made during the selection process. The artificial neural network was selected as the optimal classifier for implementation on an FPGA. The algorithm was first implemented in software and used as the basis for the design on an FPGA. A piece-wise linear approximation of a sigmoid function was used to approximate the activation function, where a look-up table was used to store the parameters. The off-line training of the artificial neural network was performed in software using the back-propagation gradient descent algorithm. Good results for the identification of GSM handsets on an FPGA were obtained, with a true acceptance ratio of 97.0%. This result is similar to the performance obtained in previous research performed in software. In this study, it was found that specific emitter identification of GSM handsets can be performed on an FPGA. Real-world applications for this technology include general cellular handset identification and access control. / MSc (Electrical and Electronic Engineering), North-West University, Potchefstroom Campus, 2015
13

Identification of cellular handsets through radio frequency signature extraction on an FPGA platform / Johannes Petrus Hattingh

Hattingh, Johannes Petrus January 2015 (has links)
Specific emitter identification refers to the process of performing identification of radio frequency transmitters by exploiting unique variations in emitted signals, caused by hardware variations. In previous research, specific emitter identification was successfully performed on GSM handsets. However, no research has been done on the implementation of specific emitter identification of GSM handsets on an FPGA platform. This study focuses on feature extraction and identification algorithms, as well as the implementation of the identification algorithm on an FPGA. During this study, phase modulation error was used, as previous research indicated that phase modulation error is an effective feature set for identification purposes. As the implementation of a classification algorithm on an FPGA was required, a trade-off between complexity and feasibility needed to be made during the selection process. The artificial neural network was selected as the optimal classifier for implementation on an FPGA. The algorithm was first implemented in software and used as the basis for the design on an FPGA. A piece-wise linear approximation of a sigmoid function was used to approximate the activation function, where a look-up table was used to store the parameters. The off-line training of the artificial neural network was performed in software using the back-propagation gradient descent algorithm. Good results for the identification of GSM handsets on an FPGA were obtained, with a true acceptance ratio of 97.0%. This result is similar to the performance obtained in previous research performed in software. In this study, it was found that specific emitter identification of GSM handsets can be performed on an FPGA. Real-world applications for this technology include general cellular handset identification and access control. / MSc (Electrical and Electronic Engineering), North-West University, Potchefstroom Campus, 2015
14

Modelagem de microtubo do tipo espaguete aplicando análise dimensional / Modeling of microtube emitters applying dimensional analysis

Katsurayama, Geancarlo Takanori 28 September 2018 (has links)
Nos projetos de irrigação deseja-se que a água seja aplicada de maneira uniforme. Em áreas com topografia irregular, muitas vezes é necessário utilizar emissores regulados para se atingir tal objetivo. Porém, esses emissores apresentam custo maior de aquisição. Como alternativa, pode-se utilizar os microtubos, sendo esses tubos de polietileno com diâmetro interno pequeno, normalmente variando entre 0,5 a 1,5 mm. Os microtubos permitem variar seu comprimento a fim de se compensar variações de pressão ao longo da linha lateral. Assim, teoricamente, pode-se obter 100% de uniformidade na vazão dos emissores. Para isso é necessário a realização de um projeto criterioso, levando em consideração os parâmetros construtivos e de operação desse emissor. Contudo, não se tem uma equação genérica para o regime laminar de escoamento que atenda a gama de diâmetros encontrados e que levem em consideração todas as variáveis intervenientes, sendo muitas vezes aplicado interpolações para se obter os coeficientes de ajustes da equação. Assim, o objetivo deste trabalho foi utilizar análise dimensional para se obter uma equação genérica a fim de se facilitar o dimensionamento de sistemas de irrigação com esse tipo de emissor, operando no regime laminar de escoamento. O experimento consistiu em obter a relação vazão versus carga de pressão versus comprimento para uma série de microtubos, sendo testados três diâmetros internos (0,796, 0,869 e 1,108 mm), nove comprimentos (0,3 a 1,5 m) e dez cargas de pressão (0,5 a 9,5 m.c.a.). Para dedução da equação com análise dimensional, usou-se pressão, diâmetro interno, comprimento do microtubo, velocidade de escoamento, viscosidade dinâmica e massa específica como variáveis. A equação obtida teve desempenho melhor que as demais equações testadas, apresentando erros relativos de 3,50, 3,25 e 4,65% na estimativa da carga de pressão, vazão e comprimento do microtubo, respectivamente. / In irrigation projects it is desired that water be applied evenly. In areas with irregular topography, it is often necessary to use regulated emitters to achieve this goal. However, these issuers have a higher acquisition cost. Alternatively, the microtubes may be used, these polyethylene tubes having small internal diameter, usually ranging from 0.5 to 1.5 mm. The microtubes allow their length to be varied in order to compensate for pressure variations along the lateral line. Thus, theoretically, one can obtain 100% uniformity in the flow of the emitters. For this it is necessary to carry out a criterious project, taking into consideration the construction and operating parameters of this emitter. However, there is no general equation for the laminar flow regime that meets the range of diameters found and that considers all intervening variables, and interpolations are often applied to obtain the coefficients of adjustment of the equation. Thus, the objective of this work was to use dimensional analysis to obtain a generic equation in order to facilitate the design of irrigation systems with this type of emitter, operating in the laminar flow regime. The experiment consisted in obtaining the flow versus pressure versus length ratio for a series of microtubes, three internal diameters (0.796, 0.869 and 1.108 mm), nine lengths (0.3 to 1.5 m) and ten loads of pressure (0.5 to 9.5 mca). For the deduction of the equation with dimensional analysis, pressure, internal diameter, microtube length, flow velocity, dynamic viscosity and specific mass were used as variables. The obtained equation had better performance than the other equations tested, presenting relative errors of 3.50, 3.25 and 4.65% in the estimation of pressure load, flow rate and length of the microtube, respectively.
15

Design of a FEEP Thruster for Micro-/Nano-Satellites

Badami, Muhammad Ali January 2019 (has links)
CubeSat development has seen a rise since the first launch in 2003 due to faster design process and low launch costs. It has played a vital role in providing access to space to small start-ups and academic organizations with low budgets. It has also enabled the testing of different upcoming technologies in space and has helped in providing hands-on experience to students taking part in design of such platforms. University of Pisa, in collaboration with SITAEL, has also taken an initiative to design and develop a CubeSat to test the FEEP thruster, design of which is presented in the thesis. A FEEP system was designed to fit within 1U dimensions and with a dry mass of approximately 820 grams. The system is based on slit emitter which provides an advantage over already available technologies in the market which uses needle emitters. Slit emitter scan achieve multiple Taylor cones without the need of clustering as used in needle emitters and also have a higher Thrust to Power Ratio. A propellant comparison was done considering all the properties required for an ideal propellant for a FEEP system. This comparison led to the selection of indium as working propellant which has an atomic mass of 114.8 u and a melting point of 156.6 °C. The FEEP system was designed keeping in mind easy assembling and modularity of thruster for ease in changing parts. The design consists of three different modules that are assembled separately and then joined together to complete the assembling of the system. The propellant tank, which also houses the emitter, has an internal volume of 32.75 cm3 and can hold approximately 240 grams of indium, which has a density of 7.31 g/cm3. During mission analysis, a 600km altitude orbit was proposed by analyzing the amount of propellant required for drag compensation and de-orbit maneuver at different altitudes with worst case values for ballistic coefficient and Thrust to Weight Ratio. At this altitude, the propellant requirement is 254.4 grams, 14.4 grams more than that of what can fit in the propellant tank of the designed thruster. However, both design of the system and mission analysis are ongoing processes and changes would be made in the future to either one or both to meet the requirements.
16

A Novel Buried-Emitter Photovoltaic Cell for High Efficiency Energy Conversion

Samadzadeh Tarighat, Roohollah January 2013 (has links)
To address the commonly poor short wavelength response of the conventional solar cell structure which consists of a highly doped thin emitter layer on top of a thicker and less doped base, the novel concept of the Buried-Windowed-Emitter is introduced. This new solar cell structure makes use of a high quality semiconductor layer on top of the traditionally made highly doped emitter and greatly enhances the spectral response of the solar cell by giving the superficially generated carriers a higher chance of collection at the junction. In the proposed BWE structure the emitter is windowed in order to electrically connect the top layer to the base for current collection. The efficacy of the proposed novel device is proven by computer aided device simulations using the available device simulation tools such as MEDICI. The results of simulation show that the proposed novel Buried-Windowed-Emitter solar cell will not only improve the short wavelength spectral response of the overall cell as expected, but also will boost the spectral efficiency for all the wavelengths. Another exciting conclusion from the results of the computer simulation of the BWE solar cell is that the minority carrier lifetime in the top layer does not need to be very high for a superb performance and values as low as 1µs can still boost the short circuit current of the cell to values close to the theoretical limit of the photo-current collectable by a silicon solar cell. This is indeed a good news for manufacturability of this device as it should be practically feasible to achieve epitaxial films with minority carrier lifetime in this range. In order to increase the understanding about the rather complex structure of the proposed Buried-Windowed-Emitter solar cell, an analytical circuit level model, similar to the case of the standard solar cell, is developed for the proposed device. The developed analytical model helps to understand the importance of the main design parameters such as the dimensions of the pattern of the windowed emitter. On the path to fabricate the proposed BWE solar cell, great deal of work is done on the development of a low temperature (<300°C) epitaxial silicon technology using the benefits of Plasma Enhanced Chemical Vapor Deposition (PECVD). Highly doped epitaxial silicon layers of up to around 1µm thickness are achieved with sheet resistivity as low as 7Ω/sq which is much lower than what is reposted in the literature in similar deposition conditions. Intrinsic, phosphorous doped n-type and boron doped p-type epitaxial films have been developed on silicon substrates. Measurement of reflection spectra of the deposited epitaxial films is proposed as a fast, non destructive and process-integrate-able method to assess the crystalline quality of the epitaxial films. Effects of higher temperature post deposition annealing have been studied on the develop epitaxial films A full technology is developed for the fabrication of the proposed novel solar cells. Photo-masks are designed to create 10 different architectures for the design of the windowed emitter in the BWE cell. All the steps taken in the successful fabrication of the novel BWE cells are presented in detail and the relevant findings are discussed and proposed as future research topics. Three kinds of cells are fabricated using the developed technology to separately study the effects of partial coverage of the windowed emitter, the optical performance of the developed epitaxial silicon films and the performance and manufacturability of the novel BWE solar cell The results show that the concept of windowed-emitter by itself (even without the top layer) is capable of enhancing the performance of the solar cell when compared to a standard design. It also promises high conversion efficiency for the BWE solar cell in case a high quality top layer can be deposited on top of the windowed emitter. The results further reveal the lower than expected quality of the low temperature epitaxial films despite the indication of their full crystallinity through other analyses. Use of the epitaxial films as the emitter of the solar cell is proposed as a direct and effective method of studying the photovoltaic performance of the low temperature epitaxial films. Further development of the epitaxial technology will lead to feasibility of a BWE solar cell with very high photovoltaic performance.
17

Spherical Silicon Photovoltaics: Material Characterization and Novel Device Structure

Cheng, Cherry Yee Yan 21 August 2008 (has links)
Single crystalline silicon spheres have been used as alternative material for solar cell fabrication. This innovative technology has several advantages over traditional wafer technology. However, the material, process flow and characterization techniques are very different from the planar technology due to the spherical geometry. In material characterization, microwave photoconductivity decay is used to measure carrier lifetime. This technique is analyzed theoretically by mathematical treatment in this thesis. Furthermore, the carrier lifetime is measured in order to investigate rapid thermal grown oxide quality in the role of surface passivation of silicon sphere. A traditional way of making spherical cells is to create a p-n junction by high temperature diffusion of phosphorous dopants into p-type silicon spheres. To further reduce the fabrication cost, a low temperature epitaxial film highly doped with phosphorous is deposited on the sphere surface to form an emitter layer using Plasma Enhanced Chemical Vapour Deposition (PECVD). The process flow of device fabrication is very different from silicon wafer thus a new set of process steps are derived for silicon spheres. Two main device structures, omission of insulating layer and silicon nitride as insulating layer between emitter film and substrate, are proposed. The deposition parameters, pressure, power, and deposition time are optimized for spherical geometry. The quality of the junction is evaluated by its current-voltage characteristic and capacitance-voltage characteristic. The results are also compared to similar device structures in planar technology. To examine the photovoltaic performance, illuminated current-voltage measurement is taken to provide information on short circuit current, open circuit voltage and fill factor. Furthermore, spectral response of quantum efficiency is investigated to assess the ability of carrier collection for a spectrum of wavelength. Limitations on spherical diode performance are concluded from the measurement results.
18

Spherical Silicon Photovoltaics: Material Characterization and Novel Device Structure

Cheng, Cherry Yee Yan 21 August 2008 (has links)
Single crystalline silicon spheres have been used as alternative material for solar cell fabrication. This innovative technology has several advantages over traditional wafer technology. However, the material, process flow and characterization techniques are very different from the planar technology due to the spherical geometry. In material characterization, microwave photoconductivity decay is used to measure carrier lifetime. This technique is analyzed theoretically by mathematical treatment in this thesis. Furthermore, the carrier lifetime is measured in order to investigate rapid thermal grown oxide quality in the role of surface passivation of silicon sphere. A traditional way of making spherical cells is to create a p-n junction by high temperature diffusion of phosphorous dopants into p-type silicon spheres. To further reduce the fabrication cost, a low temperature epitaxial film highly doped with phosphorous is deposited on the sphere surface to form an emitter layer using Plasma Enhanced Chemical Vapour Deposition (PECVD). The process flow of device fabrication is very different from silicon wafer thus a new set of process steps are derived for silicon spheres. Two main device structures, omission of insulating layer and silicon nitride as insulating layer between emitter film and substrate, are proposed. The deposition parameters, pressure, power, and deposition time are optimized for spherical geometry. The quality of the junction is evaluated by its current-voltage characteristic and capacitance-voltage characteristic. The results are also compared to similar device structures in planar technology. To examine the photovoltaic performance, illuminated current-voltage measurement is taken to provide information on short circuit current, open circuit voltage and fill factor. Furthermore, spectral response of quantum efficiency is investigated to assess the ability of carrier collection for a spectrum of wavelength. Limitations on spherical diode performance are concluded from the measurement results.
19

Modeling and Characterization of Microfabricated Emitters: In Pursuit of Improved ESI-MS Performance

Wu, Xinyun 23 December 2011 (has links)
Electrospray ionization (ESI) has been an invaluable technique to mass spectrometry (MS) especially for analyzing large bio-molecules with unparalleled sensitivity, robustness, and simplicity. Great effort in the development of ESI technique has been devoted in the emitter design, as its shape and geometry have proved pivotal to the electrospray performance and further MS detection. Intrinsic problems for the traditional single-hole emitters including clogging and low throughput limit the applicability of the technique. To address this issue, the current project is focused on developing multiple electrospray (MES) emitters for improved ESI-MS analysis. In this thesis, joint work of both computational fluid dynamic (CFD) simulations for electrospray and offline electrospray experiments for spray current measurement were performed. Numerical simulations were used to test the effect of various emitter designs on electrospray performance and the laboratory results serve as a guide and validation. The CFD code was based on Taylor-Melcher leaky dielectric model (LDM) and the transient electrospray process was successfully simulated. The method was first validated via a 750 μm inner diameter (i.d.) emitter and further applied to a 20 μm i.d. model. Different stages of the electrospray process were visually demonstrated and the quantitative investigations for the change of spray current under various applied electric fields and flow rates share good agreement with previous simulations and measurements. Based on the single-aperture prototype, MES simulations were performed with 2-hole and 3-hole emitters. Simulation predictions compared favorably with the experimental results. Evidence from this work has proved that CFD simulation can be used as an effective numerical tool to test emitter designs for MES. The benchmarking result on the successful simulation of a microscale emitter electrospray achieved in this work is believed to be the smallest scale of the dynamic simulation for electrospray published to date. / Thesis (Master, Chemistry) -- Queen's University, 2011-12-23 13:36:08.754
20

A Novel Buried-Emitter Photovoltaic Cell for High Efficiency Energy Conversion

Samadzadeh Tarighat, Roohollah January 2013 (has links)
To address the commonly poor short wavelength response of the conventional solar cell structure which consists of a highly doped thin emitter layer on top of a thicker and less doped base, the novel concept of the Buried-Windowed-Emitter is introduced. This new solar cell structure makes use of a high quality semiconductor layer on top of the traditionally made highly doped emitter and greatly enhances the spectral response of the solar cell by giving the superficially generated carriers a higher chance of collection at the junction. In the proposed BWE structure the emitter is windowed in order to electrically connect the top layer to the base for current collection. The efficacy of the proposed novel device is proven by computer aided device simulations using the available device simulation tools such as MEDICI. The results of simulation show that the proposed novel Buried-Windowed-Emitter solar cell will not only improve the short wavelength spectral response of the overall cell as expected, but also will boost the spectral efficiency for all the wavelengths. Another exciting conclusion from the results of the computer simulation of the BWE solar cell is that the minority carrier lifetime in the top layer does not need to be very high for a superb performance and values as low as 1µs can still boost the short circuit current of the cell to values close to the theoretical limit of the photo-current collectable by a silicon solar cell. This is indeed a good news for manufacturability of this device as it should be practically feasible to achieve epitaxial films with minority carrier lifetime in this range. In order to increase the understanding about the rather complex structure of the proposed Buried-Windowed-Emitter solar cell, an analytical circuit level model, similar to the case of the standard solar cell, is developed for the proposed device. The developed analytical model helps to understand the importance of the main design parameters such as the dimensions of the pattern of the windowed emitter. On the path to fabricate the proposed BWE solar cell, great deal of work is done on the development of a low temperature (<300°C) epitaxial silicon technology using the benefits of Plasma Enhanced Chemical Vapor Deposition (PECVD). Highly doped epitaxial silicon layers of up to around 1µm thickness are achieved with sheet resistivity as low as 7Ω/sq which is much lower than what is reposted in the literature in similar deposition conditions. Intrinsic, phosphorous doped n-type and boron doped p-type epitaxial films have been developed on silicon substrates. Measurement of reflection spectra of the deposited epitaxial films is proposed as a fast, non destructive and process-integrate-able method to assess the crystalline quality of the epitaxial films. Effects of higher temperature post deposition annealing have been studied on the develop epitaxial films A full technology is developed for the fabrication of the proposed novel solar cells. Photo-masks are designed to create 10 different architectures for the design of the windowed emitter in the BWE cell. All the steps taken in the successful fabrication of the novel BWE cells are presented in detail and the relevant findings are discussed and proposed as future research topics. Three kinds of cells are fabricated using the developed technology to separately study the effects of partial coverage of the windowed emitter, the optical performance of the developed epitaxial silicon films and the performance and manufacturability of the novel BWE solar cell The results show that the concept of windowed-emitter by itself (even without the top layer) is capable of enhancing the performance of the solar cell when compared to a standard design. It also promises high conversion efficiency for the BWE solar cell in case a high quality top layer can be deposited on top of the windowed emitter. The results further reveal the lower than expected quality of the low temperature epitaxial films despite the indication of their full crystallinity through other analyses. Use of the epitaxial films as the emitter of the solar cell is proposed as a direct and effective method of studying the photovoltaic performance of the low temperature epitaxial films. Further development of the epitaxial technology will lead to feasibility of a BWE solar cell with very high photovoltaic performance.

Page generated in 0.0514 seconds