• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 202
  • 152
  • 97
  • 25
  • 18
  • 15
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 593
  • 64
  • 55
  • 54
  • 46
  • 44
  • 43
  • 38
  • 35
  • 32
  • 30
  • 30
  • 30
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Ethanol production from lignocellulose using high local cell density yeast cultures. Investigations of flocculating and encapsulated Saccharomyces cerevisiae

Westman, Johan January 2014 (has links)
Efforts are made to change from 1st to 2nd generation bioethanol production, using lignocellulosics as raw materials rather than using raw materials that alternatively can be used as food sources. An issue with lignocellulosics is that a harsh pretreatment step is required in the process of converting them into fermentable sugars. In this step, inhibitory compounds such as furan aldehydes and carboxylic acids are formed, leading to suboptimal fermentation rates. Another issue is that lignocellulosics may contain a large portion of pentoses, which cannot be fermented simultaneously with glucose by Saccharomyces cerevisiae. In this thesis, high local cell density has been investigated as a means of overcoming these two issues. Encapsulation of yeast in semi-permeable alginate-chitosan capsules increased the tolerance towards furan aldehydes, but not towards carboxylic acids. The selective tolerance can be explained by differences in the concentration of compounds radially through the cell pellet inside the capsule. For inhibitors, gradients will only be formed if the compounds are readily convertible, like the furan aldehydes. Conversion of inhibitors by cells close to the membrane leads to decreased concentrations radially through the cell pellet. Thus, cells closer to the core experience subinhibitory levels of inhibitors and can ferment sugars. Carbohydrate gradients also give rise to nutrient limitations, which in turn trigger a stress response in the yeast, as was observed on mRNA and protein level. The stress response is believed to increase the robustness of the yeast and lead to improved tolerance towards additional stress. Glucose and xylose co-consumption by a recombinant strain, CEN.PK XXX, was also improved by encapsulation. Differences in affinity of the sugar transporters normally result in that glucose is taken up preferentially to xylose. However, when encapsulated, cells in different parts of the capsule experienced high and low glucose concentrations simultaneously. Xylose and glucose could thus be taken up concurrently. This improved the co-utilisation of the sugars by the system and led to 50% higher xylose consumption and 15% higher final ethanol titres. A protective effect by the capsule membrane itself could not be shown. Hence, the interest in flocculation was triggered, as a more convenient way to keep the cells together. To investigate whether flocculation increases the tolerance, like encapsulation, recombinant flocculating yeast strains were constructed and compared with the non-flocculating parental strain. Experiments showed that strong flocculation did not increase the tolerance towards carboxylic acids. However, the tolerance towards a spruce hydrolysate and especially against furfural was indeed increased. The results of this thesis show that high local cell density yeast cultures have the potential to aid against two of the major problems for 2nd generation bioethanol production: inhibitors and simultaneous hexose and pentose utilisation. / <p>Akademisk avhandling som för avläggande av teknologie doktorsexamen vid Chalmers tekniska högskola försvaras vid offentlig disputation den 19 februari 2014,klockan 13.30 i KA-salen, Kemigården 4, Göteborg.</p>
222

Encapsulation de Dehalococcoides: avantage pour la déhalogénation des solvants chlorés en sites contaminés

Fournier St-Laurent, Samuel 01 1900 (has links)
Le tétrachloroéthène (PCE) et les éthènes chlorés qui lui sont apparentés ont été abondamment utilisés pour plusieurs applications en industrie dès le début du 20e siècle. Ils sont cependant comptés parmi les polluants les plus communs des sols et de l’eau et beaucoup d’efforts sont déployés afin de les éliminer. Nous croyons que la conversion des éthènes chlorés en éthènes par des microorganismes est une solution prometteuse. Le premier aspect du projet visait donc à établir les conditions pour lesquelles un consortium enrichi en Dehalococcoides ethenogenes permettrait la conversion complète de PCE en éthène. Les expériences réalisées nous ont permis de souligner le rôle de l’acide lactique ajouté aux cultures comme source de carbone et source indirecte d’électrons pour la déhalorespiration. Nous avons également pu établir l’effet de la concentration initiale de biomasse dans les cultures sur le profil de déhalogénation du PCE. Le deuxième aspect du projet visait à développer un protocole d’encapsulation du consortium dans une matrice polymérique afin de profiter des nombreux avantages potentiels de l’encapsulation. Nous avons testé trois montages d’encapsulation différents : atomisation avec jet d’air, atomisation avec vibrations ultrasoniques et « drop-wise ». Le dernier montage prévoyait l’encapsulation des cultures dans des billes d’alginate enrobées de chitosane gélifié par du lignosulfonate. C’est le seul montage qui nous a permis d’encapsuler le consortium de façon efficace sans effet significatifs négatifs sur son activité de déchlorination. Aussi, la comparaison des profils de déhalogénation du PCE de cellules encapsulées et cellules libres a montré une plus faible accumulation de TCE, 1,2-DCE et VC dans les échantillons de cellules encapsulée et, par conséquent, une conversion plus rapide et plus complète du PCE en éthène. Finalement, nous avons observé une tendance favorable à l’idée que les microorganismes encapsulés bénéficient d’un effet de protection contre de faibles concentrations d’oxygène. / Tetrachloroethylene (PCE) and other chlorinated ethenes have been used for industrial purposes since the beginnning of 20th century. However, they are now considered common pollutants of soil and water. A lot of efforts are directed toward elimination of these compounds and we believe degradation of these chlorinated ethenes by microorganisms is the best solution. The first step of this project was to establish a complete conversion of PCE to its non-toxic product ethylene using an enriched consortium of Dehalococcoides ethenogenes. Our results show the importance of lactic acid as a carbon source and indirect source of electrons in a reaction known as dehalorespiration. We have been able to establish the effect of initial biomass on the biodegradation profile of PCE. The second step of the project was to obtain a working protocol for encapsulation of the consortium in a polymeric matrix. Such immobilization procedure would then allows numerous possible advantages as shown in the literature. We tested three encapsulation setups: air atomization, ultrasonic atomization and drop-wise technique. In the last setup, we successfully encapsulated the bacterial consortium into particles made of an alginate core surrounded by a chitosan layer. Thus the drop-wise technique allowed encapsulation of the consortium without negative effects on its dechlorination activity. In addition, the dechlorination profiles of encapsulated cells showed a lower accumulation of chlorinated intermediates TCE, 1,2-DCE and VC which yield a more rapid and complete conversion of PCE to ethylene. Finally, our results support the idea that encapsulated microorganisms may benefit from a protective effect when oxygen is present in the medium.
223

Zeolite encapsulated metal complexes as heterogeneous catalysts for oxidation reactions

Willingh, Gavin Von January 2012 (has links)
>Magister Scientiae - MSc / This study describes the synthesis and characterisation of Cu(II) and V(IV) complexes of tri- and quadridentate ligands L1 and L2 formed by condensation of ethylenediamine with acetylacetonate in 1:1 and 1:2 molar ratio, respectively. Encapsulation of these metal complexes in the nanocage of zoilite-Y generates new heterogeneous catalysts. These catalysts were synthesized employing the flexible ligand method encapsulation technique.The structures of these encapsulated complexes were established on the basis of various physico-chemical and spectroscopic studies. The results indicated that the complexes did not hinder or modify the framework or structure of the zeolite, confirming successful immobilization of Schiff-bases through the voids of zeolite Y.These encapsulated complexes were screened as heterogeneous catalysts for various oxidation reactions such as such as phenol, benzene, styrene and cyclohexene using a green oxidant (H2O2).For comparison, the corresponding neat complexes were screened as potential homogeneous catalysts for these oxidation reactions. The results proved that the corresponding homogeneous systems described here represent an efficient and inexpensive method for oxidation of phenol, benzene, styrene and cyclohexene, having advantages over heterogeneous catalysis are its high activity and selectivity and short reaction times. Its major problem is its industrial application regarding principally the separation of the catalyst from the products.The size of the substrate has a significant effect on the conversion by encapsulated complexes such as in styrene oxidation. Therefore, it was established that steric effects of the substrates play a critical role in the poor reactive nature of the encapsulated complexes.In general, the percentage conversion decreased upon encapsulation of complexes in zeolite Y. All catalysts studied proved to be potential catalysts for the various oxidation reactions.It has been shown in this study that encapsulation can effectively improve product selectivity but requires a longer reaction time in most cases for maximum activity.Furthermore,oxovanadium complexes were more reactive than copper-based catalysts in all oxidation reactions tested in this study.A reaction mechanism study revealed that the activity of the encapsulated and neat complexes occurs through either formation of peroxovanadium (V) or hydroperoxidecopper(II) intermediate species.The studies in this thesis, therefore, conclude that the Cu(II) and V(IV) complexes encapsulated in Y-zeolite are active heterogeneous catalysts for the selective oxidation of various substrates. Encapsulation of the metal complexes in the super cages (-cages) of the zeolite matrix has the advantages of solid heterogeneous catalysts of easy separation and handling, ruggedness, thermostability, reusability (regeneration of the deactivated catalysts) as well as share many advantageous features of homogeneous catalysts.
224

Engineering a Pancreatic Islet Microenvironment for Improved Survival, Function, Protection, and Delivery

Clarissa L Hernandez Stephens (7041350) 02 August 2019 (has links)
<p>It is estimated that 1 in 500 Americans are inflicted with type I diabetes (T1D) with approximately 18,000 children and adolescents diagnosed each year. Islet/β cell replacement with long-lasting glucose-sensing and insulin-releasing functions has the potential to eliminate the need for insulin injections and minimize complications for individuals with T1D. However, limitations remain precluding it from widespread clinical use, including i) limited donor supply, ii) significant loss of functional islet mass upon transplantation, iv) limited functional longevity, and v) need for life-long systemic immunosuppression. To restore glucose-responsive insulin-release back to the patient’s body without the need for systemic immunosuppression, our approach involves a subcutaneous injection using a novel fibril-forming biologic, type I oligomeric collagen (Oligomer). Oligomer protects and in situ encapsulates replacement cells beneath the skin by transitioning from a liquid to a stable collagen-fibril scaffold, within seconds, just like those found in the body’s tissues. Preclinical validation studies in streptozotocin-induced diabetic mice show that replacement of islets at a dose of 500 or 800, results in a rapid (within 24 hours) reversal of hyperglycemia. All animals receiving syngeneic islets maintained euglycemia for beyond 90 days, while >80% of animals receiving allogeneic or xenogeneic (rat) islets remained euglycemia for at least 50 days. Histopathological analysis of Oligomer-islet implants showed normal morphology with no apparent evidence of a foreign body response and immune cell infiltrate. To our knowledge, this is the first report of an injectable subQ islet transplant strategy that yields rapid lowering and extended glycemic control without systemic immunosuppression.</p>
225

Příprava a charakterizace kationických liposomů nesoucích nové imunoadjuvans. / The Preparation and the Characterization of the Cationic Liposomes Carrying New Immunoadjuvant.

Houšť, Jiří January 2018 (has links)
The aim of this diploma thesis was preparation, characterization and determination of encapsulation efficiency of the cationic liposomes composed of dimethyldioctadecylammonium bromide (DDAB) and cholesterol carrying new drug MT05 with an immunoadjuvant effect. The influence of the temperature of sonication bath and the influence of the volume of liposomal suspension on the average size of liposomes and their polydispersity index was monitored. The most effective liposome preparation by sonication bath was at temperature of 60 řC. The volume of liposomes undergoing sonication did not influence the resulting values of the average size of liposomes and their polydispersity index. The time of sonication time was 6 hours and could be shortened by using sonication bath with higher output. The determination of encapsulation efficiency was carried out in three separated experiments by HPLC-MS/MS. The encapsulation efficiency of the cationic liposomes was 30.1 ± 8.5 % in the first experiment, 43 ± 25 % in the second, and 32 ± 25 % in the third. The amount of DDAB was determined only in the liposomes prepared in the third experiment. The amount of DDAB in the purified liposomes was 78.9 ± 3.7 % in the first replicate, 65.4 ± 1.8 % in the second and 53.8 ± 1.4 % in the third. The actual molar ratio of MT05...
226

Encapsulação de montmorilonita por meio da polimerização radicalar controlada via RAFT em emulsão para produção de filmes nanoestruturados com propriedades anisotrópicas / Encapsulation of Montmorillonite by RAFT-mediated emulsion polymerization for the preparation of nanostructured films with anisotropic properties

Silva, Rodrigo Duarte 06 March 2017 (has links)
Este trabalho descreve a síntese de látices poliméricos híbridos contendo a argila natural Montmorilonita (MMT) por meio da polimerização radicalar controlada via mecanismo de transferência reversível de cadeia por adição-fragmentação (RAFT) em emulsão sem adição de surfatante. Primeiramente, copolímeros anfifílicos com diferentes estruturas e composições, foram preparados por meio da polimerização via RAFT em solução e caracterizados por ressonância magnética nuclear de hidrogênio (RMN 1H) e cromatografia por exclusão de tamanho (SEC). A interação entre os copolímeros sintetizados, chamados de macroagentes RAFT, e a superfície da MMT foi estudada por meio de isotermas de adsorção experimentais, as quais foram ajustadas por modelos teóricos. Os macroagentes RAFT à base de ácido acrílico (AA), acrilato de metil éter poli(etileno glicol) (PEGA) e acrilato de n-butila (BA) apresentaram afinidade pela argila como mostraram as isotermas do \"tipo L\" (Langmuir) obtidas. Os látices híbridos preparados utilizando esses macroagentes RAFT foram analisados por microscopia eletrônica de transmissão em temperatura criogênica (cryo-TEM), que revelou lamelas de MMT decoradas com nanopartículas poliméricas. As isotermas de adsorção dos macroagentes RAFT catiônicos à base de metacrilato de 2-(dimetilamino)etila (DMAEMA), PEGA e BA foram do \"tipo H\" (alta afinidade). Esses macroagentes RAFT possibilitaram a preparação de dispersões estáveis de complexos de MMT/macroagente RAFT, o que foi verificado por espalhamento dinâmico de luz (DLS), e sua utilização na síntese de látices híbridos levou à formação de uma camada polimérica em torno das lamelas de MMT. Os filmes poliméricos nanocompósitos obtidos a partir de látices catiônicos estáveis de poli(metacrilato de metila-co-acrilato de n-butila)/MMT apresentaram melhor estabilidade térmica e melhores propriedades mecânicas do que os filmes poliméricos preparados sem adição de argila como mostraram, respectivamente, os resultados de análise termogravimétrica (TG) e de análise termodinâmico-mecânica (DMA) dos materiais. / This work describes the synthesis of hybrid polymer latexes containing natural Montmorillonite clay (MMT) by reversible addition-fragmentation chain transfer (RAFT)-mediated surfactant-free emulsion polymerization. Firstly, amphiphilic copolymers with different structures and compositions were prepared by RAFT polymerization in solution and characterized by hydrogen nuclear magnetic resonance (1H NMR) and size exclusion chromatography (SEC). The interaction between these copolymers (referred to as macroRAFT agents) and the MMT surface was studied by experimental adsorption isotherms, which were adjusted by theoretical adsorption models. MacroRAFT agents based on acrylic acid (AA), poly(ethylene glycol) methyl ether acrylate (PEGA) and n-butyl acrylate (BA) displayed affinity for MMT as shown by the \"L-type\" (Langmuir) isotherms obtained. The hybrid latexes prepared using these macroRAFT agents were analyzed by transmission electron microscopy at cryogenic temperatures (cryo-TEM), which revealed polymer-decorated MMT platelets. The adsorption isotherms of cationic macroRAFT agents based on 2-(dimethylamino)ethyl methacrylate (DMAEMA), PEGA and BA were of the \"H-type\" (high affinity). These RAFT macroRAFT agents allowed the preparation of stable dispersions of MMT/macroRAFT agents complexes, which was verified by dynamic light scattering analysis (DLS), and their use in the synthesis of hybrid latexes led to the formation of a polymer layer surrounding the MMT platelets. Nanocomposite films obtained from stable cationic latexes of poly(methyl methacrylate-co-n-butyl acrylate)/MMT showed better thermal stability and better mechanical properties than polymer films prepared without addition of clay as shown, respectively, by the results of thermogravimetric analysis (TG) and dynamic mechanical analysis (DMA) of the final materials.
227

Desenvolvimento tecnológico de produtos particulados obtidos a partir de Lippia sidoides pela técnica de spray drying e avaliação das propriedades antifúngicas / Technological development of Lippia sidoides powder products by spray drying technique and evaluation of their antifungal activities

Fernandes, Luciana Pinto 23 January 2009 (has links)
A Lippia sidoides é planta largamente difundida nas práticas da medicina popular no Brasil, sendo utilizada como anti-séptico de uso tópico, fato justificável pela presença de timol. Como estratégia para a obtenção de novos produtos com atividade antimicrobiana, a partir de fonte vegetal, o presente estudo visou o desenvolvimento tecnológico de extratos secos padronizados e a encapsulação do óleo essencial dessa planta, através da técnica de secagem por atomização (spray drying). Para obtenção dos extratos secos padronizados, utilizou-se metodologia capaz de avaliar a qualidade da matéria-prima vegetal, das ações de transformação, dos produtos intermediários e do produto final. A solução extrativa foi obtida a partir das folhas secas e moídas dessa planta, empregando-se o método de extração por maceração dinâmica, avaliando-se alguns fatores que influenciavam sua eficiência. A solução extrativa selecionada foi submetida à secagem por atomização, investigando-se a combinação de adjuvantes tecnológicos sobre o desempenho do equipamento e sobre características físico-químicas do produto obtido. Além disso, avaliou-se a atividade antifúngica in vitro dos extratos secos, confirmando-se o efeito antimicrobiano dos mesmos. Para a encapsulação do óleo essencial de Lippia sidoides, utilizou-se a técnica de spray drying (método físico) e a inclusão molecular com -ciclodextrina (método químico) com subseqüente secagem por spray drying. Na microencapsulação por spray drying foi utilizado um conteúdo de óleo de 20 e 25% em relação ao material de parede. Como material de parede foram empregadas diferentes proporções de maltodextrina DE 10 e goma-arábica, sendo as emulsões de alimentação atomizadas até à concentração de 60% de sólidos totais. A eficiência da encapsulação foi avaliada através da quantidade específica de óleo essencial encapsulado nas micropartículas, sendo obtido valor máximo de 65%, dependente das condições experimentais empregadas. Observou-se existir teor de sólidos ótimo (50%) e relação entre o aumento da retenção de óleo total e as maiores concentrações de goma-arábica nas emulsões de alimentação, sendo que todas as micropartículas demonstraram atividade antifúngica. A inclusão molecular do óleo essencial, através de sua complexação com moléculas de -ciclodextrina exibiu eficiência de encapsulação de até 70%. As diferentes proporções de óleo essencial e -ciclodextrina testadas influenciaram esses resultados, sendo que menores retenções foram observadas quando maiores quantidades de óleo foram adicionadas às suspensões de alimentação. Pelas análises térmicas foi possível demonstrar a mais alta estabilidade térmica dos produtos encapsulados (micropartícula/complexo de inclusão) comparados ao óleo essencial original. Os dados adquiridos durante os estudos de desenvolvimento de produtos secos, a partir de Lippia sidoides, indicaram o potencial desses como agentes antimicrobianos naturais para fins medicinais, representando assim, alternativa para o aproveitamento da espécie vegetal pelo setor farmacêutico. / Lippia sidoides is an aromatic shrub widely used in a folk medicine in Brazil as local antiseptic, justified by thymol presence as the major constituent of its essential oil. As strategy for production of new antifungal herbal products, the present study aimed the technological development of Lippia sidoides standardized spray dried extracts as well as the encapsulation of its essential oil by spray drying/ molecular inclusion. In order to obtain the standardized dried extract, process control parameters of manufacturing operations were established and they were continuously tracked to provide reproducibility from batch-to-batch and to assure productsquality. Extraction (maceration) from Lippia sidoides leaves was used to produce thymol-containing liquid extracts. Optimal extraction conditions were determined and the selected extractive solution was spray dried. Effect of different carrier ratios on physicochemical and antifungal properties of dried extracts was evaluated. Lippia sidoides dried extract showed an important antifungal effect against the tested strains. Lippia sidoides essential encapsulation was carried out by spray drying technique (physical method) and molecular inclusion within -cyclodextrin (chemical method) followed by spray drying of the slurries in order to produce inclusion complex in a powder form. For microencapsulation by spray drying, maltodextrin DE 10 and gum arabic in different were used as carrier. Content of essential oil related to carrier was 20 and 25% in weight and the emulsions were atomized from 30% up to 60% of total solid concentration. Encapsulation efficiency was estimated through determination of the content of essential oil in the microcapsules and a maximum value obtained was 65%, depending on experimental parameters adopted. An optimal solid content of the encapsulating composition (50%) was observed. The increase of gum arabic amount in the infeed emulsion was related to the increase in the total oil retention in the microparticles. Antifungal activities of microparticles were evaluated, evidencing their potential as important antifungal agent. For inclusion complex formation between essential oil and -cyclodextrin, the encapsulation efficiency was up to 70%. The entrapment ability was influenced by the different essential oil: -cyclodextrin ratios tested. A decreasing tendency in the total oil content was observed, when the initial amount of added oil was increased. The greater thermal stability of the encapsulated products (microparticles/ inclusion complexes) in comparison to the original oil was confirmed by thermal analysis. The finding acquired during the development of Lippia sidoides dried products indicated their potential as natural antimicrobial agent for medicinal propose and provided evidences which support the use of such plant specimen by pharmaceutical industry.
228

Intra-articular delivery of encapsulated human mesenchymal stem cells reduces osteoarthritis progression in a rat model

McKinney, Jay Michael 11 July 2017 (has links)
Osteoarthritis (OA) is a degenerative disease of the joint that leads to joint instability, degradation of the articular cartilage surface and eventually joint failure. Articular cartilage surfaces exhibit unique mechanical behaviors, bearing and distributing loads across joint surfaces, but have poor regenerative capacities. Human Mesenchymal Stem Cells (hMSCs) present a promising treatment to target OA, relying on their regenerative capacity and structural contributions to tissue repair, along with their immunomodulatory and anti-inflammatory properties. The multipotency of hMSCs allow these cells to differentiate towards osteogenic, chondrogenic and adipogenic lineages and directly incorporate into native tissue. hMSCs also possess the capacity to induce numerous paracrine-mediated processes including the recruitment of stem and progenitor cells, prevention of apoptosis, facilitation of beneficial remodeling and modulation of the immune response. Through encapsulating hMSCs, the effects of their paracrine action were studied directly, as the capsule presents a mechanical barrier for direct physical interaction and integration of these cells within the native tissue. The objective of this study was to utilize encapsulation of hMSCs to determine the paracrine effects of hMSCs on the progression of OA. OA was surgically induced in rats via the medial meniscus transection (MMT) surgery, which presents the phenotypical cartilage degradation associated with OA at 3 weeks. The efficacy of hMSC intervention was assessed using Lewis Rats with MMT (n=5 per group). Intra-articular injections of encapsulated hMSCs were given one day post-op and 3 weeks post-op for the 3-week and 6-week MMT studies, respectively. Animals were euthanized on the final day for both the immediate and delayed treatment studies. Micro-structural changes of the articular cartilage, osteophytes and subchondral bone of the medial tibial plateau were assessed using contrast enhanced microCT. We hypothesized that the intra-articular delivery of encapsulated hMSCs will have a positive effect, via paracrine-mediated action, on the onset and development of OA. The capsules also have the potential to improve retention and cell viability in the knee joint space. Each of these factors could contribute to enhanced therapeutic potential of the hMSC treatment. Utilizing NIR labeled sodium alginate capsules, a retention profile for the capsules yielded a tau value of 11.48 days, whereas previous studies have shown scaffold free hMSCs show complete clearance in 7 days. The 3-week MMT, run to analyze the effects of immediate treatment of encapsulated hMSCs on the onset of OA, showed a trend towards decreased cartilage thickness and a decreased surface roughness for the hMSC group in comparison to the Saline group, specifically. Additionally, the hMSC group showed a trend towards increased mineralized osteophyte volume for the hMSC group in comparison to the Saline group. Analysis of the subchondral bone yielded no differences between the hMSC and Saline groups for bone morphology. The 6 week MMT study was run to analyze the effects of a delayed treatment of encapsulated hMSCs on OA after the disease had developed. This study showed a similar result with the immediate treatment study for surface roughness, with the hMSC group showing a decrease in comparison to the Saline group. However, no differences were noted for cartilage thickness between the two respective groups. To further analyze the cartilage in the later stages of OA, exposed bone was quantified yielding a trend towards decreased exposed bone in the hMSC group in comparison to the Saline group. The mineralized osteophyte volume for the hMSC group, of the delayed treatment study, yielded a significantly higher value than all other groups. Additionally, the subchondral bone of the hMSC group trended towards a decreased porosity in comparison to the Saline group. This is one of the first studies to use sodium alginate encapsulation of hMSCs as an innovative scaffold means for intra-articular injections into the knee space. Encapsulated hMSCs permitted not only enhanced cellular retention in the knee space but showed a potential chondroprotective role of the paracrine signaling properties of hMSCs in the early stages of OA. These advantages of encapsulated hMSCs were countered by enhancements of secondary OA phenotypic changes, mainly increased mineralized osteophyte volume and a trend towards increased subchondral bone sclerosis in the later stages of OA. hMSCs have shown great potential as disease modifying drugs and through this study we have further explored the efficacy of these drugs for future treatments of OA. This study has high clinical relevance and with clinical practice running well ahead of current scientific evidence, it is imperative that these findings be considered not only in pre-clinical work but in current and future clinical trials. / 2018-07-11T00:00:00Z
229

Microencapsulação de compostos bioativos de Camellia sinensis em sistemas lipídicos por spray drying / Microencapsulation of bioactive compounds of Camellia sinensis in lipid systems by spray drying

Secolin, Vanessa Aparecida 06 February 2015 (has links)
O chá verde (Camellia sinensis) é reconhecido mundialmente por seu alto teor de polifenóis, em especial as catequinas. As catequinas estão relacionadas à prevenção de várias doenças degenerativas, como o câncer e diabetes, devido ao grande potencial antioxidante. Contudo, vários incovenientes precisam ser superados para aprimorar o uso destes produtos, principalmente em relação à sua biodisponibilidade. O desenvolvimento de carreadores lipídicos na encapsulação de compostos bioativos é uma tecnologia recente capaz de resolver vários problemas de biodisponibilidade apresentadas pelos produtos naturais, produzindo uma estrutura capaz de proteger os compostos ativos. O objetivo deste trabalho foi o desenvolvimento de uma formulação utilizando carreador lipídico, empregando métodos de secagem para aumentar a estabilidade dos compostos bioativos, enfatizando-se processos de preparação, tipo de excipientes e procedimentos para a caracterização físico-química, estabilidade e avaliação da atividade antioxidante in vitro do produto final. Os compostos bioativos foram extraídos a partir das folhas secas e moídas de chá-verde através do processo de maceração dinâmica, sendo filtrado, concentrado e liofilizado. A formulação foi desenvolvida utilizando o sistema de balanço hidrófilo-lipófilo (EHL) com tensoativos nãoiônicos e co-solvente, e caracterizados pelas análises organolépticas, centrifugação, reologia, microscopia óptica, distribuição de tamanho e potencial zeta. Para a etapa de secagem, selecionou-se a formulação mais estável. As formulações foram secas em spray dryer de escala laboratorial a uma vazão de 4,0 g/min, e temperaturas de 100, 120 e 150 °C. O desempenho de secagem foi avaliado pela recuperação do produto. Os pós obtidos por spray drying foram caracterizados quanto ao teor de umidade, atividade da água, densidade, distribuição granulométrica, propriedades de fluxo, cristalinidade, morfologia e redispersibilidade. Após, se avaliou a atividade antioxidante do produto em óleo vegetal (óleo de soja) utilizando o teste acelerado de estabilidade oxidativa em Rancimat®. O EHL, o tipo de tensoativo e a técnica de preparo da formulação influenciaram diretamente na estabilidade do sistema. Para as formulações estudadas, o tensoativo que conferiu uma maior estabilidade foi o Gelucire® 44/14, sendo selecionado para prosseguimento com o processo de secagem das composições. O rendimento do processo atingiu em média 51,3 ±3,5 %, típico para secadores do tipo spray dryer em escala laboratorial. A maioria das partículas apresentou aparência arredondada, sem presença visível de porosidade, independente do adjuvante (lactose ou trealose). O produto apresentou baixa atividade de água (<= 0,22) e teor de umidade (<= 1,79). O aumento da temperatura de secagem provocou um ligeiro aumento no diâmetro médio de partícula quando a lactose foi utilizada como adjuvante de secagem (9,8 ± 5,9 ?m para 13,65 ± 8,4 ?m). Os pós obtidos tiveram baixa densidade, sendo menor em temperaturas mais altas. O índice de Carr e Fator de Hausner (15 % e < 1,25, respectivamente) indicaram boas propriedades de compressão e fluidez. O produto foi prontamente redispersível, recuperando facilmente sua consistência e características originais. A avaliação da estabilidade oxidativa acelerada utilizando Rancimat demonstrou que o processo de encapsulação conferiu uma maior solubilidade e proteção dos compostos bioativos, levando ao aumento da atividade antioxidante. Os resultados aqui relatados confirmam a viabilidade da encapsulação dos compostos bioativos de Camellia sinensis em carreadores lipídios empregando o processo de spray drying. O produto apresenta potencial de aplicação como matéria-prima para a produção de formas orais, inclusão em produtos nutracêuticos e cosméticos / Green tea, a product made from Camellia sinensis leaves, is recognized worldwide by its high polyphenol content, in special the catechins. Tea catechins are linked to the prevention of several degenerative diseases as cancer and diabetes. However, several drawbacks need to be overcome in order to increase the use of this products, being their bioavailability one of the upmost. The development of carrier lipid based containing bioproducts is a recent technology, which can solve several bioavailability problems presented by natural products, producing a structure which confer protection to active compounds. The aim of this work was the development of carrier lipid based compositions containing bioactive compounds of Camellia sinensis (green tea) by spray drying evaluating processes of preparation, type of excipients and characterization of physicochemical properties and evaluation the antioxidant activity in vitro of the product. Bioactive compounds from dried and milled green tea leaves was extracted by dynamic maceration, filtered, concentrated and freeze-dried. The formulation was developed through the utilization of Hydrophilic Lipophilic Balance System (HLB) using the non-ionic surfactants and a co-solvent and characterized by organoleptic analysis, centrifugation, rheology, optical microscopy, size distribution and zeta potential. The most stable compositions were submitted to spray drying. The compositions were dried in a labscale spray dryer at flow rate of 4.0 g/min at temperatures of 100, 120 and 150 °C. The spray drying performance was characterized by determination of the powder production yield. Spray dried powders were characterized by moisture content, water activity, density, size distribution, flow properties, crystallinity, morphology, and redispersibility. After, it was evaluated the antioxidant activity of the product in vegetable oil (soybean oil) using the accelerated oxidative stability test Rancimat®. The HLB, the type of surfactant and the preparation method of the formulation influenced the system stability. For the formulations studied, the surfactant which confers the greater stability was Gelucire® 44/14, which was selected to prepare composition for spray drying. The powder production yield falls around 51.3 ±3.5 %, typical for lab scale spray dryers. Wrinkled and rounded particles, without visible presence porosities were mostly generated, independent of the adjuvant (trehalose or lactose). The product presented low water activity (<= 0.20) and low moisture content (<= 1.79). Increasing in drying temperature caused a slight increase in mean particle diameter, when lactose was used as drying carrier (9.8 ±5.9 ?m to 13.65 ±8.4 ?m). Low density powders were generated, but density tends to be lower at high drying temperatures composition were submitted to spray drying. Carr index and Hausner ratio of the product (< 15% and < 1.25, respectively) were indicative of good compressive and flow properties. The product was promptly redispersible, regaining its original consistency straight forwardly. The accelerated oxidative stability using the Rancimat demonstrated that the encapsulation increased the solubility and protection of bioactive compounds, resulting to increased antioxidant activity of the product. The results here reported confirm the feasibility of entrapment of herbal bioactive compounds of Camellia sinensis in lipid carrier by spray drying. The product has potential to be used as raw material for production of oral dosage forms, inclusion in nutraceutical and cosmetic products.
230

Acúmulo de lipídios intracelulares e imobilização de lipase por Candida viswanathii: potencial para hidrólise de gordura de frango

Dias, Kleydiane Braga 05 December 2016 (has links)
Este trabalho teve como objetivos avaliar as condições de cultivo para a produção de lipase e acúmulo de lipídio pela levedura Candida viswanathii utilizando diferentes fontes de carbono e nitrogênio em condições submersas, imobilizar a lipase e avaliar o seu potencial em reação de hidrólise de gordura de frango em biorreator tipo cesto. Os cultivos submersos em condições limitantes de nitrogênio com diferentes fontes de lipídios puros ou complexos mostraram que C. viswanathii acumulou 44% de lipídio intracelular em trioleína e 39% em azeite de oliva utilizando extrato de levedura como fonte de nitrogênio. Nestas condições, a produção de lipase foi 26,78 U/ml em azeite de oliva e 23,6 U/ml em trioleína. O nitrato de amônio inibiu a produção de lipase em 48% em trioleína e 69% em azeite de oliva. Além disso, a análise dos ácidos graxos revelou predominância de ácido oleico (C18:1), em proporções de 69,31, 60,69 e 68,84%, para azeite de oliva, glicose e azeite/glicose, respectivamente. Quanto à imobilização, estudou-se a influência do diâmetro da esfera e da concentração de alginato, obtendo-se o melhor diâmetro de 2 mm e concentração de 2% de alginato, com atividade enzimática de 13,42 U/g e 28 U/g, respectivamente. Utilizou-se alginato de sódio em sua forma convencional e modificado com glutaraldeído, álcool polivinílico e carboximetilcelulose, sendo que o alginato na forma convencional foi o que apresentou melhores resultados, obtendo-se 28,6 U/g e mais de 50% de atividade após 15 ciclos de reuso. A caracterização da lipase livre e encapsulada de C. viswanathii revelou temperatura ótima de atividade de 35 ºC para a enzima encapsulada e na faixa de 40 – 45 ºC para a lipase livre sobre a hidrólise do p-NPP. Sobre a hidrólise de gordura de frango, tanto enzima livre quanto encapsulada apresentaram temperatura ótima de atividade à 40 ºC. Quanto à estabilidade térmica, a enzima livre apresentou boa estabilidade até 12h de incubação nas temperaturas de 30 e 40 ºC. Já a enzima encapsulada mostrou-se estável em até 72 horas de incubação nas mesmas temperaturas. A enzima livre apresentou aumento de atividade na presença de NH4Cl e CaCl2 (117,50% e 111,25%, respectivamente). Já a lipase encapsulada apresentou aumento na atividade com todos os íons analisados, sendo CaCl2 (152,94%), NH4Cl (145,88%), BaCl2 (144,12%) e NaCl (138,24%). Em relação à hidrólise, observou-se que tanto a enzima livre como encapsulada apresentaram maior atividade hidrolítica após 96 horas de incubação, em que a enzima encapsulada obteve 34,66% de hidrólise e a enzima livre obteve 17,91% de hidrólise. Assim, a levedura Candida viswanathii mostrou-se eficiente tanto para o acúmulo de lipídio, quanto para a produção de lipase nas condições estabelecidas. Além disso, a enzima encapsulada apresentou boa estabilidade e potencial para aplicação na hidrólise de gordura de frango. / The aim of this work was to evaluate the culture conditions for lipase production and lipid accumulation by yeast Candida viswanathii using different carbon sources and nitrogen under submerged conditions; and to immobilize the lipase produced in alginate and to evaluate its potential for poultry fat hydrolysis in basket type bioreactor. Submerged cultures under nitrogen-limiting conditions with different sources of pure or complex lipids showed that C. viswanathii accumulated 44% intracellular lipid in triolein and 39% in olive oil using yeast extract as a source of nitrogen. Under these conditions, lipase production was 26.78 U/ml using olive oil and 23,6 U/ml with triolein. Ammonium nitrate inhibited lipase production in 48% with triolein and 69% wiht olive oil. In addition, analysis of fatty acids showed a predominance of oleic acid (C18:1), in proportions of 69.31, 60.69 and 68.84%, for olive oil, glucose and olive oil/glucose, respectively. The influence of drop diameter and alginate concentration was studied, obtaining the best 2 mm diameter and 2% alginate concentration, with enzymatic activity of 13.42 U/g and 28.0 U/g , respectively. Sodium alginate was used in its conventional form and modified with glutaraldehyde, polyvinyl alcohol and carboxymethylcellulose, and the alginate in the conventional form gave the best results, obtaining 28.6 U/g and more than 50% activity after 15 cycles of reuse. The free and encapsulated lipase characterization of C. viswanathii revealed an optimal activity temperature of 35 °C for the encapsulated enzyme and in the 40-45 °C range for free lipase on the hydrolysis of p-NPP. On the hydrolysis of poultry fat, both free and encapsulated enzyme presented optimum temperature of activity at 40 ºC. As for thermal stability, the free enzyme presented good stability up to 12 h of incubation at temperatures of 30 and 40 ºC. The encapsulated enzyme was stable in up to 72 hours of incubation at the same temperatures. The free enzyme showed increased activity in the presence of NH4Cl and CaCl2 (117.50% and 111.25%, respectively). In addition, the encapsulated lipase presented increased activity with all the ions analyzed, being CaCl2 (152.94%), NH4Cl (145.88%), BaCl2 (144.12%) and NaCl (138.24%). In relation to the hydrolysis, it was observed that both the free and encapsulated enzyme presented higher hydrolytic activity after 96 hours of incubation, in which the encapsulated enzyme obtained 34.66% hydrolysis and the free enzyme obtained 17.91% hydrolysis. Thus, yeast Candida viswanathii proved to be efficient both for lipid accumulation and for lipase production under the established conditions. In addition, the encapsulated enzyme presented good stability and potential for application in poultry fat hydrolysis.

Page generated in 0.0869 seconds