• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 6
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 53
  • 49
  • 18
  • 17
  • 14
  • 11
  • 11
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Identification of the novel genes during endochondral ossification in the mandibular condylar cartilage

Song, Yang, 宋揚 January 2009 (has links)
published_or_final_version / Dentistry / Doctoral / Doctor of Philosophy
12

Identification of the novel genes during endochondral ossification in the mandibular condylar cartilage

Song, Yang, January 2009 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2009. / Includes bibliographical references (leaves 163-189). Also available in print.
13

Generation and analysis of transgenic mice expressing collagen X with a mutation in the NC1 domain

Ho, Sai-pong., 何世邦 January 2002 (has links)
published_or_final_version / Biochemistry / Master / Master of Philosophy
14

Mouse model with impaired matrix degradation at the chondro-osseous junction

Chan, Wing-yu, Tori. January 2009 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2009. / Includes bibliographical references (leaves 182-200) Also available in print.
15

Engineering Hypertrophic Chondrocyte-based Grafts for Enhanced Bone Regeneration

Bernhard, Jonathan C. January 2016 (has links)
Bone formation occurs through two ossification processes, intramembranous and endochondral. Intramembranous ossification is characterized by the direct differentiation of stem cells into osteoblasts, which then create bone. Endochondral ossification involves an intermediate step, as stem cells first differentiate into chondrocytes and produce a cartilage anlage. The chondrocytes mature into hypertrophic chondrocytes, which transform the cartilage anlage into bone. Bone tissue engineering has predominantly mimicked intramembranous ossification, creating osteoblast-based grafts through the direct differentiation of stem cells. Though successful in specific applications, greater adoption of osteoblast-based grafts has failed due to incomplete integration, limited regeneration, and poor mechanical maintenance. To overcome these obstacles, inspiration was drawn from native bone fracture repair, creating tissue engineered bone grafts replicating endochondral ossification. Hypertrophic chondrocytes, the key cell in endochondral ossification, were differentiated from mesenchymal stem cell sources by first generating chondrocytes and then instigating maturation to hypertrophic chondrocytes. Conditions influencing this differentiation were investigated, indicating the necessity of prolonged chondrogenic cultivation and elevated oxygen concentrations to ensure widespread hypertrophic maturation. Comparing the bone production performance of differentiated hypertrophic chondrocytes to differentiated osteoblasts revealed that hypertrophic chondrocytes deposit significantly greater volume of bone mineral at a higher density than osteoblasts, albeit in a more juvenile form. When implanted subcutaneously, the hypertrophic chondrocytes stimulated turnover of this juvenile template into compact-like bone, whereas osteoblasts proceeded with processes similar to bone remodeling, generating spongy-like bone. Implanting these tissue engineered constructs into an orthotopic, critical-sized femoral defect saw hypertrophic chondrocyte-based constructs integrate quickly with the femur and facilitate the creation of significantly more bone, resulting in a successful bridging of the defect. The success of hypertrophic chondrocyte-based grafts in overcoming the failures of tissue engineered bone grafts demonstrates the potential of endochondral ossification inspired bone strategies and prompts its further investigation towards clinical utilization.
16

Cartilage Development and Maturation In Vitro and In Vivo

Ng, Johnathan Jian Duan January 2017 (has links)
The articular cartilage has a limited capacity to regenerate. Cartilage lesions often result in degeneration, leading to osteoarthritis. Current treatments are mostly palliative and reparative, and fail to restore cartilage function in the long term due to the replacement of hyaline cartilage with fibrocartilage. Although a stem-cell based approach towards regenerating the articular cartilage is attractive, cartilage generated from human mesenchymal stem cells (hMSCs) often lack the function, organization and stability of the native cartilage. Thus, there is a need to develop effective methods to engineer physiologic cartilage tissues from hMSCs in vitro and assess their outcomes in vivo. This dissertation focused on three coordinated aims: establish a simple in vivo model for studying the maturation of osteochondral tissues by showing that subcutaneous implantation in a mouse recapitulates native endochondral ossification (Aim 1), (ii) develop a robust method for engineering physiologic cartilage discs from self-assembling hMSCs (Aim 2), and (iii) improve the organization and stability of cartilage discs by implementing spatiotemporal control during induction in vitro (Aim 3). First, the usefulness of subcutaneous implantation in mice for studying the development and maintenance of osteochondral tissues in vivo was determined. By studying juvenile bovine osteochondral tissues, similarities in the profiles of endochondral ossification between the native and ectopic processes were observed. Next, the effects of extracellular matrix (ECM) coating and culture regimen on cartilage formation from self-assembling hMSCs were investigated. Membrane ECM coating and seeding density were important determinants of cartilage disc formation. Cartilage discs were functional and stratified, resembling the native articular cartilage. Comparing cartilage discs and pellets, compositional and organizational differences were identified in vitro and in vivo. Prolonged chondrogenic induction in vitro did not prevent, but expedited endochondral ossification of the discs in vivo. Finally, spatiotemporal regulation during induction of self-assembling hMSCs promoted the formation of functional, organized and stable hyaline cartilage discs. Selective induction regimens in dual compartment culture enabled the maintenance of hyaline cartilage and potentiated deep zone mineralization. Cartilage grown under spatiotemporal regulation retained zonal organization without loss of cartilage markers expression in vivo. Instead, cartilage discs grown under isotropic induction underwent extensive endochondral ossification. Together, the methods established in this dissertation for investigating cartilage maturation in vivo and directing hMSCs towards generating physiologic cartilage in vitro form a basis for guiding the development of new treatment modalities for osteochondral defects.
17

The effect of fluid shear stress on growth plate

Denison, Tracy Adam. January 2009 (has links)
Thesis (Ph.D)--Biomedical Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Boyan, Barbara; Committee Co-Chair: Schwartz, Zvi; Committee Member: Bonewald, Lynda; Committee Member: Jo, Hanjoong; Committee Member: Sambanis, Athanassios. Part of the SMARTech Electronic Thesis and Dissertation Collection.
18

The proteoglycan perlecan regulates long bone growth through interactions with developmental proteins in the growth plate

Smith, Simone Marsha-Lee 01 June 2007 (has links)
Perlecan is the major heparan sulfate proteoglycan (HSPG) in growth plate cartilage and is critical for growth plate chondrocyte proliferation and proper skeletal development. Its core protein and attached chondroitin sulfate (CS) and heparan sulfate (HS) chains mediate interactions with many diverse proteins. Fibroblast growth factor (FGF)-2 and FGF-18 are other regulators of chondrocyte proliferation in the growth plate. Additionally, FGF-18 controls the hypertrophy and cartilage vascularization necessary for endochondral ossification. The research presented in this dissertation aimed to identify known and novel perlecan-binding proteins that are endogenous to the growth plate and to characterize their interactions with perlecan. FGF-2 (known to bind HSPGs) bound to perlecan in both a cationic filtration (CAF) assay and an immunoprecipitation (IP) assay primarily via the HS chains on perlecan. When digested with chondroitinase ABC to remove its CS chains, perlecan augmented binding of FGF-2 to the FGFR-1 and FGFR-3 receptors and increased FGF-2 -stimulated proliferation in BaF3 cells expressing these FGF receptors. Thus, growth plate perlecan binds to FGF-2 by its HS chains but can only deliver FGF-2 to FGF receptors when its CS chains are removed. FGF-18 (known to bind to heparin and to heparan sulfate from some sources) bound to growth plate perlecan. This binding was unchanged by chondroitinase or heparitinase digestion of perlecan, indicating that perlecan GAGs are not involved in FGF-18 binding. FGF-18 bound equally to recombinant domains I-III of perlecan (Alt1) and to full-length perlecan purified from the growth plate. Additionally, FGF-18 bound equally to recombinant domain III of perlecan, to Alt1 and to Alt2 (a domain I-III variant with no heparan sulfate). Therefore, binding sites for FGF-18 are present in domain III of perlecan. Affinity chromatography isolated histone H3 as a perlecan-binding protein from the chondrocyte matrix. CAF assays confirmed the interaction as specific, dependent primarily on HS chains of perlecan, although CS chains and the perlecan core were also involved. Immunohistochemistry detected perlecan and histone H3 colocalized in growth plate cartilage. These results can help us better understand the growth factor-independent control that perlecan exerts on endochondral ossification and, therefore, long bone growth.
19

Indian hedgehog stimulates chondrocyte hypertrophic differentiation in endochondral bone formation

Li, Jun, January 2007 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2008. / Also available in print.
20

Changes in acetyl-CoA mediate Sik3-induced maturation of chondrocytes in endochondral bone formation / アセチルCoAは内軟骨性骨化におけるSik3誘導性の軟骨細胞分化を制御する

Kosai, Azuma 23 January 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第22145号 / 医博第4536号 / 新制||医||1039(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 戸口田 淳也, 教授 安達 泰治, 教授 松田 秀一 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM

Page generated in 0.0246 seconds