• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 6
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 53
  • 49
  • 18
  • 17
  • 14
  • 11
  • 11
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The effect of fluid shear stress on growth plate chondrocytes

Denison, Tracy Adam 30 June 2009 (has links)
Cartilage tissue provides compressive resistance in diarthrodial joints, and has been shown to be regulated by mechanical signals, in particular with regard to production of extracellular matrix proteins. However, less is understood about how chondrocytes in regions not solely purposed to provide compressive resistance may also be affected by mechanical forces. The growth plate is a small layer of cartilage that functions to facilitate longitudinal growth of the long bones from in utero through post-adolescent development. The growth plate maintains distinct regions of chondrocytes at carefully regulated stages of endochondral ossification that are in part characterized by their morphology and differential responsiveness to vitamin D metabolites. Understanding if mechanical cues could be harnessed to accelerate or delay the process of endochondral ossification might be beneficial for optimizing tissue engineering of cartilage or osteochondral interfaces. This study focused on three aims to provide a basis for future work in this area: 1) Develop a cell line culture model useful for studying growth plate chondrocytes, 2) Determine the response of primary growth plate chondrocytes and the cell line model to fluid shear stress, and 3) determine if expression of integrin beta 1 is important for the observed responses to shear stress. The findings of this study suggest that inorganic phosphate can promote differentiation in coordination with the 24,25(OH)2D3 metabolite of vitamin D, and that fluid shear stress generally inhibits differentiation and proliferation of growth plate chondrocytes in part through an integrin beta 1 mediated pathway.
32

Estudo dos efeitos da irradiação pulsada de baixa intensidade sobre o desenvolvimento de segmentos de coluna vertebral implantados em camundongos isogênicos / Low-intensity pulsed ultrasonic irradiation effects on development of vertebral column segments implanted in isogenics mice

Andrezza Furquim da Cruz 15 April 2005 (has links)
Estudo dos efeitos da irradiação ultra-sônica pulsada de baixa intensidade sobre o desenvolvimento de segmentos da coluna vertebral implantados em camundongos isogênicos / The aim of the present research was evaluate the action of low-intensity pulsed ultrasonic irradiation on development and ossification of vertebral column blastemas, through mice new born tail segments implants in adult receptor isogenic mice lineages C57BL/6 and Balb/C. New born tail segments were implanted in subcutaneous tissues of adults isogenics mice C57BL/6 and intramuscularly in adults isogenics mice Balb/C. After 24 hours the implant, the animals in both groups, were stimulated with the low-intensity pulsed ultrasound (LIPUS), 10 minutes per day. After 5 days of stimulus, the receptors animals were death and had the implanted tails removed for histopathology, trhrough Periodic Acid Schiff plus Alcian Blue (PAS/AB), Masson's tricomico and hem lumen-eosin (HE). The group of animals stimulated which received subcutaneous implant presented the implant with accelerated in inter-vertebral diks, faces to chondrocytes organization and chondroblastes findings in cartilaginous matrix, showing maturity in fiber cartilages arrangements. It was observed too, a collagen fibers enlargement in the disks fibro cartilage which show more dense next the pulposo nucleus in the segments implanted and stimulated, compared with the controls segments. The areas of the segments were available by Fisher's test and Student's t. It didn't watch significant differences in the vertebral bodies' areas sizes in the animals which implant was subcutaneous (p'< OU = '0.05). In the intramuscular implants animals group, it was observed a major velocity in the hialuronic acid matrix formation in the intervertebral disks after LIPUS stimulus. Moreover, the fibrous ring fiber cartilages' were better organized with large number of cells inside the cartilaginous matrix compared with the controls segments. With regard to the vertebral bodies in the intramuscular implants, it's not verifies significant increases in the areas (p'< OU =' 0,05). The findings allow conclude that LIPUS should promote the ontogenetic differentation of the structural components of the mice vertebral column more quickly, trhough vertebras endochondral ossification microscopic evaluation and the inter-vertebral disks components differentiation, follow the methodology employed.
33

Bone growth following demineralized bone matrix implantation requires angiogenesis

Lam, Stephanie 22 January 2016 (has links)
Angiogenesis is required for endochondral ossification during development and fracture healing; however the exact mechanisms and temporal relationship between the two processes remains unclear. In this study, we utilize an in vivo model of endochondral ossification in mice by implanting demineralized bone matrix (DBM) proximal to the femur to induce ectopic bone formation. TNP-470, a drug known to be anti-angiogenic, was used to inhibit vascularization during the time course of de novo bone formation in order to define the role of angiogenesis during the chondrogenic phase of endochondral bone formation. Day 2, day 8, and day 16 post-surgery were selected time points to represent pre-chondrogenic, chondrogenic, and bone mineralization stages, respectively. Plain x-ray and micro-CT analysis showed that inhibition of angiogenesis led to decreased mineralized tissue formation. Inhibited angiogenesis was confirmed with qRT-PCR. Most striking, however, is that while stem cells are recruited and committed to the chondrogenic lineage, subsequent chondrogenesis failed to progress based on the failure of Sox5 and Sox6 expression, which directs chondrocyte commitment. This expands the role for angiogenesis to a much earlier stage than currently thought and places the necessity of angiogenesis very early in the endochondral ossification process.
34

Live imaging analysis of the growth plate in a murine long bone explanted culture system / マウス長管骨器官培養系における成長板のライブイメージング解析

Hirota, Keisho 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21673号 / 医博第4479号 / 新制||医||1036(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 松田 道行, 教授 滝田 順子, 教授 戸口田 淳也 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
35

Characterization of a Novel Nuclear Variant of Bmp2 and Coordinate Regulation of Col11a2 and Col27a1 by the Transcription Factor Lc-Maf

Mayo, Jaime Lynn 13 July 2007 (has links) (PDF)
ABSTRACT I CHARACTERIZATION OF A NOVEL NUCLEAR VARIANT OF BMP2Bone morphogenetic protein 2 (Bmp2) is a signaling protein that was first detected by its ability to induce cartilage and bone formation. It has since been implicated in broad variety of developmental, patterning, and disease processes. To date, Bmp2 has only been known to function as an extracellular signaling molecule. However, we have obtained clear evidence for a nuclear form of Bmp2. This nuclear variant, nBmp2, contains a bipartite NLS that overlaps the site of proteolytic cleavage. The NLS remains intact and functional when translation of Bmp2 initiates from a downstream alternative start codon. The resulting protein lacks the signal peptide and is therefore translated in the cytoplasm rather than the endoplasmic reticulum, thus avoiding proteolytic processing and secretion. Instead, the uncleaved protein containing the intact NLS is translocated to the nucleus. Preliminary functional analyses in zebrafish indicate that nBmp2 is critical for proper heart development. To determine if this function is conserved in mammals, we have also generated mice harboring a null allele for nBmp2. ABSTRACT II COORDINATE REGULATION OF COL11A2 AND COL27A1 BY THE TRANSCRIPTION FACTOR LC-MAF During skeletal development, long bones of the body develop from a cartilage template that is progressively replaced by bone. This process of endochondral ossification requires precisely coordinated expression of extracellular matrix proteins such as the cartilage-specific collagens. In this study, enhancer/reporter assays demonstrated that the transcription factor Lc-Maf inhibits the transcriptional activity of a cartilage-specific Col11a2 enhancer element while a cartilage-specific COL27A1 enhancer element was strongly activated by Lc-Maf. Site-directed mutagenesis identified the binding region within the COL27A1 enhancer, and it was found to be unlike any known consensus Maf family binding site. The in vivo significance of these results was examined using immunohistochemistry and in situ hybridization in mouse limbs undergoing endochondral ossification. Taken together, these results suggest that Lc-Maf participates in the developmental transition from proliferating to hypertrophic chondrocytes during endochondral ossification by coordinately downregulating Col11a2 and upregulating Col27a1 collagen gene expression.
36

Collagen X is dispensable for hypertrophic differentiation and endochondral ossification of human iPSC-derived chondrocytes / X型コラーゲンはヒトiPS細胞由来軟骨細胞の肥大化および内軟骨性骨化に必須ではない

Kamakura, Takeshi 24 July 2023 (has links)
京都大学 / 新制・課程博士 / 博士(医科学) / 甲第24843号 / 医科博第151号 / 新制||医科||10(附属図書館) / 京都大学大学院医学研究科医科学専攻 / (主査)教授 齋藤, 潤, 教授 遊佐, 宏介, 教授 松田, 秀一 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
37

The role of PPARgamma in cartilage growth and development using cartilage-specific PPARgamma knockout mice

Monemdjou, Roxana 07 1900 (has links)
Le cartilage est un tissu conjonctif composé d’une seule sorte de cellule nommée chondrocytes. Ce tissu offre une fondation pour la formation des os. Les os longs se développent par l'ossification endochondral. Ce processus implique la coordination entre la prolifération, la différenciation et l'apoptose des chondrocytes, et résulte au remplacement du cartilage par l'os. Des anomalies au niveau du squelette et des défauts liés à l’âge tels que l’arthrose (OA) apparaissent lorsqu’il y a une perturbation dans l’équilibre du processus de développement. À ce jour, les mécanismes exacts contrôlant la fonction et le comportement des chondrocytes pendant la croissance et le développement du cartilage sont inconnus. Le récepteur activateur de la prolifération des peroxysomes (PPAR) gamma est un facteur de transcription impliqué dans l'homéostasie des lipides. Plus récemment, son implication a aussi été suggérée dans l'homéostasie osseuse. Cependant, le rôle de PPARγ in vivo dans la croissance et le développement du cartilage est inconnu. Donc, pour la première fois, cette étude examine le rôle spécifique de PPARγ in vivo dans la croissance et le développement du cartilage. Les souris utilisées pour l’étude avaient une délétion conditionnelle au cartilage du gène PPARγ. Ces dernières ont été générées en employant le système LoxP/Cre. Les analyses des souris ayant une délétion au PPARγ aux stades embryonnaire et adulte démontrent une réduction de la croissance des os longs, une diminution des dépôts de calcium dans l’os, de la densité osseuse et de la vascularisation, un délai dans l’ossification primaire et secondaire, une diminution cellulaire, une perte d’organisation colonnaire et une diminution des zones hypertrophiques, une désorganisation des plaques de croissance et des chondrocytes déformés. De plus, la prolifération et la différenciation des chondrocytes sont anormales. Les chondrocytes et les explants isolés du cartilage mutant démontrent une expression réduite du facteur de croissance endothélial vasculaire (VEGF)-A et des éléments de production de la matrice extracellulaire. Une augmentation de l’expression de la métalloprotéinase matricielle (MMP)-13 est aussi observée. Dans les souris âgées ayant une délétion au PPARγ, y est aussi noté des phénotypes qui ressemblent à ceux de l’OA tel que la dégradation du cartilage et l'inflammation de la membrane synoviale, ainsi qu’une augmentation de l’expression de MMP-13 et des néoépitopes générés par les MMPs. Nos résultats démontrent que le PPARγ est nécessaire pour le développement et l’homéostasie du squelette. PPARγ est un régulateur essentiel pour la physiologie du cartilage durant les stades de croissance, de développement et de vieillissement. / Cartilage, a connective tissue composed of chondrocytes, provides an intermediate template on which bones are formed. Long bones develop through endochondral ossification, involving coordination between chondrocyte proliferation, differentiation and apoptosis, resulting in bone replacing cartilage. Disturbances in this balance results in skeletal abnormalities, and age-related defects including osteoarthritis (OA). The exact mechanisms that control chondrocyte function and behaviour during growth and development are unknown. Peroxisome proliferator-activated receptor (PPAR) gamma, a transcription factor involved in lipid homeostasis, has recently been suggested to be involved in bone homeostasis. However, PPARγ’s role in cartilage growth and development in vivo is unknown. Therefore, for the first time, this study examines PPARγ’s specific in vivo role in cartilage growth and development using cartilage-specific PPARγ knockout (KO) mice. Conditional KO mice were generated using LoxP/Cre system. Histomorphometric analyses of embryonic and adult mutant mice demonstrate reduced long bone growth, calcium deposition, bone density, vascularity, and delayed primary and secondary ossification. Mutant growth plates are disorganized with abnormal chondrocyte shape, proliferation and differentiation, reduced cellularity, loss of columnar organization, and shorter hypertrophic zones. Isolated mutant chondrocytes and cartilage explants show decreased vascular endothelial growth factor (VEGF)-A and extracellular matrix (ECM) production product expression, and increased matrix metalloproteinase (MMP)-13 expression. Aged mutant mice exhibit accelerated OA-like phenotypes, and enhanced cartilage degradation, synovial inflammation, MMP-13 and MMP-generated neoepitope expression. Our data demonstrate that PPARγ is required for normal skeletal development and homeostasis, and is a critical regulator of cartilage health and physiology in early growth and development and aging.
38

The role of PPARgamma in cartilage growth and development using cartilage-specific PPARgamma knockout mice

Monemdjou, Roxana 07 1900 (has links)
Le cartilage est un tissu conjonctif composé d’une seule sorte de cellule nommée chondrocytes. Ce tissu offre une fondation pour la formation des os. Les os longs se développent par l'ossification endochondral. Ce processus implique la coordination entre la prolifération, la différenciation et l'apoptose des chondrocytes, et résulte au remplacement du cartilage par l'os. Des anomalies au niveau du squelette et des défauts liés à l’âge tels que l’arthrose (OA) apparaissent lorsqu’il y a une perturbation dans l’équilibre du processus de développement. À ce jour, les mécanismes exacts contrôlant la fonction et le comportement des chondrocytes pendant la croissance et le développement du cartilage sont inconnus. Le récepteur activateur de la prolifération des peroxysomes (PPAR) gamma est un facteur de transcription impliqué dans l'homéostasie des lipides. Plus récemment, son implication a aussi été suggérée dans l'homéostasie osseuse. Cependant, le rôle de PPARγ in vivo dans la croissance et le développement du cartilage est inconnu. Donc, pour la première fois, cette étude examine le rôle spécifique de PPARγ in vivo dans la croissance et le développement du cartilage. Les souris utilisées pour l’étude avaient une délétion conditionnelle au cartilage du gène PPARγ. Ces dernières ont été générées en employant le système LoxP/Cre. Les analyses des souris ayant une délétion au PPARγ aux stades embryonnaire et adulte démontrent une réduction de la croissance des os longs, une diminution des dépôts de calcium dans l’os, de la densité osseuse et de la vascularisation, un délai dans l’ossification primaire et secondaire, une diminution cellulaire, une perte d’organisation colonnaire et une diminution des zones hypertrophiques, une désorganisation des plaques de croissance et des chondrocytes déformés. De plus, la prolifération et la différenciation des chondrocytes sont anormales. Les chondrocytes et les explants isolés du cartilage mutant démontrent une expression réduite du facteur de croissance endothélial vasculaire (VEGF)-A et des éléments de production de la matrice extracellulaire. Une augmentation de l’expression de la métalloprotéinase matricielle (MMP)-13 est aussi observée. Dans les souris âgées ayant une délétion au PPARγ, y est aussi noté des phénotypes qui ressemblent à ceux de l’OA tel que la dégradation du cartilage et l'inflammation de la membrane synoviale, ainsi qu’une augmentation de l’expression de MMP-13 et des néoépitopes générés par les MMPs. Nos résultats démontrent que le PPARγ est nécessaire pour le développement et l’homéostasie du squelette. PPARγ est un régulateur essentiel pour la physiologie du cartilage durant les stades de croissance, de développement et de vieillissement. / Cartilage, a connective tissue composed of chondrocytes, provides an intermediate template on which bones are formed. Long bones develop through endochondral ossification, involving coordination between chondrocyte proliferation, differentiation and apoptosis, resulting in bone replacing cartilage. Disturbances in this balance results in skeletal abnormalities, and age-related defects including osteoarthritis (OA). The exact mechanisms that control chondrocyte function and behaviour during growth and development are unknown. Peroxisome proliferator-activated receptor (PPAR) gamma, a transcription factor involved in lipid homeostasis, has recently been suggested to be involved in bone homeostasis. However, PPARγ’s role in cartilage growth and development in vivo is unknown. Therefore, for the first time, this study examines PPARγ’s specific in vivo role in cartilage growth and development using cartilage-specific PPARγ knockout (KO) mice. Conditional KO mice were generated using LoxP/Cre system. Histomorphometric analyses of embryonic and adult mutant mice demonstrate reduced long bone growth, calcium deposition, bone density, vascularity, and delayed primary and secondary ossification. Mutant growth plates are disorganized with abnormal chondrocyte shape, proliferation and differentiation, reduced cellularity, loss of columnar organization, and shorter hypertrophic zones. Isolated mutant chondrocytes and cartilage explants show decreased vascular endothelial growth factor (VEGF)-A and extracellular matrix (ECM) production product expression, and increased matrix metalloproteinase (MMP)-13 expression. Aged mutant mice exhibit accelerated OA-like phenotypes, and enhanced cartilage degradation, synovial inflammation, MMP-13 and MMP-generated neoepitope expression. Our data demonstrate that PPARγ is required for normal skeletal development and homeostasis, and is a critical regulator of cartilage health and physiology in early growth and development and aging.
39

Estudo da presença de osteoaderina durante a ossificação intramembranosa e endocondral através de imunocitoquímica e Western Blotting / Study of the osteoadherin presence during the intramembranous and endochondral ossification by immunocytochemistry and western blotting analysis

Janones, Daniela Scarabucci 05 February 2010 (has links)
A osteoaderina (OSAD) tem sido identificada nos tecidos mineralizados, porém, seu papel na mineralização óssea não está claro. Foi feita uma comparação do momento em que a OSAD aparece na ossificação intramembranosa e endocondral, em relação aos estágios iniciais de mineralização. O osso parietal de fetos de ratos Wistar com 17, 18 e 21 dias e o côndilo mandibular de ratos com 30 dias foram removidos. A expressão de OSAD foi analisada por imunocitoquímica e Western blotting. Nos dois tipos de ossificação, a imunomarcação foi detectada nos osteoblastos; porém, na matriz extracelular a OSAD apareceu somente na fase fibrilar de mineralização, mantendo-se constante posteriormente. A análise por Western blotting revelou que os fetos com 17 dias continham pouco menos OSAD que os de 18 dias, enquanto a imunorreatividade diminuía nos fetos com 21 dias. Os resultados sugerem que a OSAD tem um papel na mineralização da matriz, atuando, provavelmente como organizadora de seu arcabouço ou retendo o mineral, além de exercer atividades de adesão entre os componentes da matriz. / Osteoadherin (OSAD) had been identified in mineralized tissues, but its specific role in mineralization remains unclear. The present study compared the appearance of OSAD at early stages of mineralization during both intramembranous and endochondral ossification. Parietal bone of 17, 18 and 21 days-old fetus and mandibular condyle of 30 days-old Wistar rats were removed. The expression of OSAD was analyzed by immunocytochemistry and Western blotting. In both types of ossification the labeling was uniformly distributed in the cytoplasm of osteoblasts but it only appeared in the mineralizing matrix when the fibrilar stage was taking place, remaining as a component of the mineralized bone matrix. Western blots revealed that 17-days-old embryos contained slightly less OSAD than 18- days-old fetus, while immunoreactivity was weak in 21 days-old fetus. The results suggest that OSAD plays a role in collagen fibril mineralization maybe by organizing the matrix assembly or by retaining the mineral into the matrix, besides exerting binding activities among its components.
40

Rôle d’ADAMTSL2 et FBN1 dans l’ossification endochondrale : étude des modèles murins mimant la dysplasie géléophysique / Role of ADAMTSL2 and FBN1 in endochondral ossification : study of murine models miming geleophysic dysplasia

Delhon, Laure 28 November 2017 (has links)
La dysplasie géléophysique (DG) est une maladie rare qui appartient à la famille des dysplasies acroméliques. Cette pathologie est caractérisée par un retard statural, une brachydactylie, une raideur articulaire, une dysmorphie faciale, une peau épaisse, une atteinte bronchopulmonaire et une surcharge valvulaire cardiaque conduisant le plus souvent à une mort précoce dans les premières années de la vie. Deux modes de transmissions ont été identifiés. Le premier autosomique récessif est dû à des mutations dans le gène ADAMTSL2. Le second, autosomique dominant est dû à un hot-spot de mutations dans les exons 41 et 42 qui codent pour le domaine Transforming Growth Factor (TGF) β-binding protein-like domain 5 (TB5) du gène FBN1. FBN1 et ADAMTSL2 codent pour des protéines sécrétées de la matrice extracellulaire (MEC). FBN1 code pour la fibrilline-1, une composante des microfibrilles qui jouent un rôle dans la biodisponibilité du TGFβ. La protéine ADAMTSL2 fait partie de la famille des ADAMTS mais n’a pas d’activité enzymatique dû à l’absence de domaine catalytique. Sa fonction est encore inconnue. Cependant des partenaires d’ADAMTSL2 ont été identifiés par notre équipe : latent-transforming growth factor beta-binding protein 1 (LTBP1) et FBN1 qui sont directement impliqués dans le stockage de TGFβ. Récemment une autre protéine, FBN2, a aussi été découverte comme partenaire d’ADAMTSL2 (Hubmacher D et. al.). L’objectif de ma thèse était de comprendre le mécanisme physiopathologique de la DG, grâce à l’analyse de modèles murins. Un premier modèle murin pour la forme récessive de la DG appelé CreCMV; Adamtsl2f/f (ou KO) a été généré. L’analyse phénotypique de ces souris a montré un retard statural, des os longs courts, des extrémités courtes. Dans les plaques de croissance des os longs des souris mutantes, nous avons observé une désorganisation des colonnes chondrocytaires associée à une diminution de l’expression du collagène de type 10, marqueur de la différentiation des chondrocytes. L’analyse de la matrice extracellulaire des plaques de croissance a révélé une désorganisation structurale importante. Une diminution de la fibrilline-1 et de LTBP-1 a été observée ainsi qu’une augmentation de l’activation de la voie de signalisation TGFβ au niveau de la plaque de croissance des souris mutantes. Nous avons observé une désorganisation du réseau microfibrillaire sur des cultures de chondrocytes de souris mutantes. Ces résultats nous ont permis de suggérer que la protéine ADAMTSL2 est impliquée dans la structure du réseau microfibrillaire, lieu de stockage du TGFβ et de démontrer un rôle majeur d’ADAMTSL2 dans la régulation de la chondrogenèse. Afin d’étudier la forme dominante de la DG, le modèle FBN1TB5+/- a été généré. Il est issu d’un système knock-in avec une mutation dans l’exon 42 du gène fbn1 qui correspond au domaine TB5 de la fibrilline-1. Nos résultats ont montré une réduction de la taille des souris hétérozygotes et homozygotes en comparaison aux souris sauvages au stade P1 et P30. Au stade P1, nous avons observé des chondrocytes plus larges et une dérégulation des marqueurs de la chondrogenèse au niveau de la plaque de croissance des fémurs des souris hétérozygotes, ainsi que chez les souris homozygotes. De plus, nous avons observé une très forte mortalité des souris homozygotes vers l’âge de 2 ou 3 mois. Nous en avons conclu que des mutations domaine TB5 de la fibrilline étaient liées à un retard statural et donc que FBN1 avait un rôle majeur dans la chondrogenèse. / Geleophysic dysplasia (GD) is a rare disease, which belong to acromelic group. This pathology is characterized by short stature, brachydactyly, joint stiffness, thick skin, facial dimorphism, broncho-pulmonary insufficiency and cardiac disease which lead to an early death in the first years of life. Two mode of inheritance have been identified. The first one, autosomal recessive, is due to mutations in ADAMTSL2 gene. The second, autosomal dominant, is due to hot-spot mutations in exon 41-42 of FBN1 gene, which encode the Transforming Growth Factor (TGF) β-binding protein-like domain 5 (TB5) of the protein. FBN1 and ADAMTSL2 encode secreted proteins of the extracellular matrix (ECM). FBN1 encodes fibrilline-1, component of microfibrillar network, playing a role in the bioavailability of TGF- β. ADAMTSL2 protein belongs to ADAMTS family, but does not have enzymatic activity due to lack of catalytic domain. Its function remains unknown. However, ADAMTSL2 partners have been identified by our team: latent-transforming growth factor beta-binding protein 1 (LTBP1) and FBN1, which are directly implied in storage of TGF-β. Recently, another protein, FBN2, have been identified as an ADAMTSL2 partner (Hubmacher D et. al.). The aim of my study was to understand the physiopathological mechanism of Geleophysic dysplasia by analysing murine models. A first murine model for the GD recessive form, CreCMV; Adamtsl2f/f (KO), have been generated. Phenotypic analysis of these mice showed short stature and shorter long bones and extremities. In long bone growth plate of mutant mice, we observed disorganization of chondrocyte columns, associated with decrease of collagen 10 expression, marker of chondrocyte differentiation. Analysis of ECM in growth plate revealed strong structural disorganization. Decrease of FBN1 and LTBP1 and were observed with an overactivation of TGF-β pathway in growth plate of mutant mice. We observed disorganization of microfibrillar network in chondrocyte cultures of mutant mice. These results suggest that ADAMTSL2 protein is implied in structure of microfibrillar network, where is stored TGF-β, and demonstrate major role of ADAMTSL2 in chondrogenesis. In order to study dominant form of GD, mouse model FBN1TB5+/-, have been generated. The mice were obtained by knock-in system, with mutation in exon 42 of FBN1 gene. Our results showed short stature of heterozygous (HT) and homozygous (Ho) mice compared to wild)type mice, at stage P1 and P30. At stage P1, we observed larger chondrocytes and deregulation of chondrogenesis markers in growth plate of HT and Ho mice. Furthermore, we observed high mortality of Ho mice at 2-3 months. We concluded that mutations in TB5 domain of FBN1 were linked to short stature and thus FBN1 have major role in chondrogenesis.

Page generated in 0.0298 seconds