• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 24
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 162
  • 162
  • 99
  • 47
  • 28
  • 28
  • 20
  • 15
  • 15
  • 15
  • 15
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

HUMAN EXPOSURE AND ENVIRONMENTAL FATE OF ENDOCRINE DISRUPTING CHEMICALS (EDCS) IN KLANG VALLEY, MALAYSIA / マレーシア、 クランバレーにおける内分泌撹乱化学物質(EDCs)の人への曝露と環境中動態

Didi Erwandi Bin Mohamad Haron 25 July 2022 (has links)
京都大学 / 新制・論文博士 / 博士(工学) / 乙第13495号 / 論工博第4202号 / 新制||工||1786(附属図書館) / (主査)教授 米田 稔, 教授 高野 裕久, 教授 松井 康人 / 学位規則第4条第2項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
82

Inhibition of Androgen Receptor Activity by 2-Ethylhexyl-2,3,4,5-tetrabromobenzoate in Prostate Cancer Cells

See, Mary Jean 04 October 2021 (has links)
No description available.
83

The Effects of 4-Nonylphenol on the Immune Response of the Pacific Oyster, Crassostrea gigas, Following Bacterial Infection (Vibrio campbellii)

Hart, Courtney 01 August 2016 (has links) (PDF)
Endocrine disrupting chemicals (EDCs) are compounds that can interfere with hormone signaling pathways and are now recognized as pervasive in estuarine and marine waters. One prevalent EDC in California’s coastal waters is the xenoestrogen 4-nonylphenol (4-NP), which has been shown to impair reproduction, development, growth, and in some cases immune function of marine invertebrates. To further investigate effects of 4-NP on marine invertebrate immune function we measured total hemocyte counts (THC), relative transcript abundance of immune-relevant genes, and lysozyme activity in Pacific oysters (Crassostrea gigas) following bacterial infection. To quantify these effects we exposed oysters to dissolved phase 4-NP at high (100 μg l-1), low (2 μg l-1), or control (100 μl ethanol) concentrations for 7 days, and then experimentally infected (via injection into the adductor muscle) the oysters with the marine bacterium Vibrio campbellii. 4-NP significantly altered the effects of bacterial infection had on THC. Oysters exposed to both high and low 4-NP did not experience a bacteria-induced increase in THC, as seen in control oysters. We also determined that V. campbellii infection induced differential expression of a subset of immune-related genes tested (Cg-bigdef2, Cg-bpi1, Cg-lys1, Cg-timp) in some, but not all, tissues; 4-NP exposure altered expression patterns in two of these genes (Cg-bpi1 and Cg-tgase). Exposure to 4-NP alone also caused differential expression in some genes (Cg-bpi1, Cg-galectin1, Cg-clec2). Lastly, low levels of 4-NP significantly increased lysozyme activity 24 h post-infection. These results suggest that exposure to 4-NP can alter both cellular and humoral immune responses to bacterial infection in C. gigas.
84

Analysis of epigenetic changes induced by exposure to a mixture of endocrine disrupting chemicals in the mouse brain and a hippocampus mouse cell model

Ekholm Lodahl, Jennifer January 2021 (has links)
Prenatal exposure to mixture N1, a chemical mixture consisting of four phthalate diesters,three pesticides and Bisphenol A, has been associated with behavioural changes as well as changes in gene expression in mice. In this study it was investigated whether the changes in gene expression could be explained by changes in DNA methylation. Mixture N1 was found to significantly change DNA methylation in three different genes (Nr3c1, Nr3c2 and Crhr1) on totally eight different Cytosine Guanine dinucleotides (CpG) positions. To further investigate whether these changes could be induced already during differentiation of cells, a hippocampal cell model HT22 was exposed to mixture N1 during differentiation. In this mode, mixture N1 induced a statistically significant change in the promoter region of Nr3c1. Unfortunately, this change could however not be validated, and the experiments would need to be repeated. In conclusion, this study showed that exposure to mixture N1 can result in changes in DNA methylation.
85

Risk Assessment of Endocrine Disrupting Chemicals by Integrating Adverse Outcome Pathway, Machine Learning and Zebrafish Embryo Model:A Case Example of Bisphenol A / 有害事象パスウェイ、機械学習、ゼブラフィッシュ胚モデルの統合による内分泌かく乱化学物質のリスク評価: ビスフェノールAを例として

Huang, Riping 26 September 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24222号 / 工博第5050号 / 新制||工||1788(附属図書館) / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 米田 稔, 教授 松井 康人, 准教授 松田 知成 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
86

Influence of the Nuclear Hormone Receptor Axis in the Progression and Treatment of Hormone Dependent Cancers

Hess-Wilson, Janet Katherine 03 April 2007 (has links)
No description available.
87

Interactions among soil, plants, and endocrine disrupting compounds in livestock agriculture

Card, Marcella 13 September 2011 (has links)
No description available.
88

The Occurrence and Fate of Steroid Hormones from Manure Amended Agriculture Fields

Sosienski, Theresa Ann 14 July 2017 (has links)
Hormones are endocrine disrupting compounds, which have been shown to alter the sexual development of aquatic organisms. Animal manure applications to agricultural fields for nutrient management can be a source of environmental hormones. This dissertation investigates the occurrence of hormones in fields applied with various manures and their adjacent streams, as well as the effect of manure application technologies on the fate of hormones in soils, sediments, and runoff. A total of 11 hormone compounds were studied. All studied analytes were quantified using liquid chromatography and triple-quadrupole mass spectrometry following various sample extraction and clean-up strategies. The spatial and temporal distribution of manure-associated hormones in a manure surface applied agricultural field and adjacent stream was studied at time points up to 7.5 months after a routine manure application. Hormones were detected mainly in the top 0-5cm soils. Significantly higher levels of hormones were found in the drystack applied area of the field when compared to dairy manure slurry applied portion. New technologies for the subsurface application of poultry litter show promise as a tool to reduce the transportation of environmental hormones in surface runoff. Once adequate sampling protocols were established; it was determined that subsurface injection of both dairy manure and poultry litter reduced the impact of manure surface runoff. Hormones also showed little vertical and lateral movement in the soil. The transformation rates of 1,4-androstadiene-3,17-dione, 4-androstene-3,17-dione and estrone were studied comparing the effects of temperature, soil type, and application type. The calculated half-life of 1,4-androstadiene-3,17-dione in poultry litter surface-applied soils was 1.9 times higher than that in the poultry litter subsurface-injected soils, indicating a faster dissipation rate in the injection slits. Estrone persisted at detectable levels for the duration of the study in all treatments. The continued use of best management practices and innovative manure management techniques for the reduction of nutrients, sediment and other contaminants has the potential to also reduce hormone transport to the natural environment. Monitoring many different types of hormones in all areas of an environmental system will continue to provide better information on the occurrence and fate of hormones sourced from manure amended soils. / Ph. D.
89

Impact of Indirect Potable Reuse on Endocrine Disrupting Compounds in the Potomac River Basin

Flanery, Amelia Lynn 17 June 2020 (has links)
The Potomac River Basin is significant for both public and ecological health as it flows directly into the ecologically-sensitive Chesapeake Bay. It is a drinking water source for about 5 million people living in Maryland, Virginia, and Washington D.C. The discovery of intersex fish, an indicator of poor ecological health, in the Chesapeake Bay occurred in the 2000s, and has led to a series of studies in the watershed to determine the sources and magnitude of endocrine disruption. Endocrine disrupting compounds (EDCs) are exogenous chemicals that interfere with the endocrine system and can cause detrimental health effects at low concentrations. This study aims to understand a best management practice referred to as planned indirect potable reuse (IPR) and its impacts on EDCs. The Occoquan Watershed is a planned IPR subwatershed of the Potomac River Basin. Water samples were collected at the water reclamation plant discharge (Upper Occoquan Service Authority), up- and downstream of that location along Bull Run, and at the water treatment plant intake (Frederick P. Griffith WTP) in the Occoquan Watershed to assess planned IPR. Samples were also collected at a water treatment plant (James J. Corbalis WTP) along the Potomac River for comparison as an unplanned IPR location. These two groups of samples were analyzed for EDCs (categorized into two groups: estrogen hormones and other synthetic organic compounds (SOCs)), nutrients, and other water quality parameters. The infrequency of estrogen hormones and SOC patterns indicate planned and unplanned IPR are both viable approaches to provide safe drinking water / Master of Science / Our river systems are important to maintain both for human and environmental health. The Potomac River Basin is the area of land drained by the Potomac River and its tributaries. The Potomac River Basin is significant for both public and ecological health as it flows directly into the ecologically-sensitive Chesapeake Bay. It is a drinking water source for about 5 million people living in Maryland, Virginia, and Washington D.C. The discovery of intersex fish, or when a single fish has both male and female characteristics, occurred in the Chesapeake Bay in the 2000s. Fish health is often an indicator of poor environmental health, and in this case endocrine disruption. This discovery led to a series of studies in the watershed to determine the sources and magnitude of endocrine disruption. Endocrine disrupting compounds (EDCs) are external chemicals that interfere with the endocrine system once they enter the body of a human or another organism, and can cause detrimental health effects even at low concentrations. This study aims to understand a best management practice, or a type of water pollution control, referred to as planned indirect potable reuse (IPR) and its impacts on EDCs. IPR occurs when wastewater from a community is discharged into to a river or a reservoir, and then downstream it is withdrawn from that same source for drinking water purposes. This can be either planned or unplanned. Planned IPR is becoming more common as population, especially in urban areas, increases. The Occoquan Watershed is a planned IPR subwatershed of the Potomac River Basin. Water samples were collected at the water reclamation plant discharge (Upper Occoquan Service Authority), up- and downstream of that location along Bull Run, and at the water treatment plant intake (Frederick P. Griffith WTP) in the Occoquan Watershed to assess planned IPR. Samples were also collected at a water treatment plant (James J. Corbalis WTP) along the Potomac River for comparison as an unplanned IPR location. These two groups of samples were analyzed for EDCs (categorized into two groups: estrogen hormones and other synthetic organic compounds (SOCs)), nutrients, and other water quality parameters. The infrequency of estrogen hormones and SOC patterns indicate planned and unplanned IPR are both viable approaches to provide safe drinking water.
90

Dispersive liquid-liquid micro-extraction of steroidal hormones and determination in wastewater using high pressure liquid chromatography: charged aerosol detector

Osunmakinde, Cecilia Oluseyi 10 1900 (has links)
Steroid hormones belong to a group of compounds known as endocrine disruptors. They are hydrophobic compounds and are categorized as natural and synthetic estrogens. Some common household products have been implicated as estrogen mimics. Exposure effects of these compounds are felt by human and wildlife, such reproductive alterations in fish and frogs. They mainly introduced into the environment through veterinary medicines administration to animals and the discharges from wastewater treatment plants (WWTPs). In this study, a new alternative analytical procedure that is simple, rapid and fast for the determination and quantification of five steroidal hormones: estriol (E3), beta estradiol (β-E2), alpha estradiol (α-E2), testosterone (T), progesterone (P) and bisphenol A (BPA) using the High pressure liquid chromatography coupled to a charged aerosol detector (HPLC-CAD). These compounds were studied because of their strong endocrine-disrupting effects in the environment. Under optimum conditions, a linear graph was obtained with correlation coefficient (R2) ranging from 0.9952 - 0.9996. The proposed method was applied to the analysis of water samples from a wastewater plant and the results obtained were satisfactory. The limits of detection (LOD) for the target analytes in wastewater influent was between 0.0002 – 0.0004 μg/L and the limit of quantification (LOQ) was 0.001 μg/L respectively for each of the analytes. Enrichment factors of 148- 258, and extraction efficiency 84- 102% were obtained for the target analytes; relative standard deviations (% RSD) for m = 6 were between 2.8 and 7.6%. The concentration of the EDCs in environment sample was between 0.2 - 2.3 μg/L. / Chemistry / M. Sc. (Chemistry)

Page generated in 0.0642 seconds