Spelling suggestions: "subject:"energisystem"" "subject:"energisystems""
321 |
Optimal rening av biogas för småskalig produktion och användning : En studie om energioptimering av biogasanläggningar / Optimal purification of biogas for small-scale production and use : A study on energy optimization of biogas plantsEnefalk, Tommy, Ersöz, Timur January 2016 (has links)
Biogas är ett förnybart bränsle, och intresset för detta bränsle ökar runt om i världen. För att kunna använda biogas som fordonsbränsle måste biogasen uppgraderas innan användning. Koldioxid och andra föroreningar skiljs av, så att metanhalten i den råa biogasen höjs och gasen kan användas i motorer. Flera olika reningstekniker finns, men detta arbete fokuserar på vattenskrubbning. Arbetet syftar till att undersöka den optimala metanhalten i biogasen med hänsyn till nettoenergin och livslängden för de motorer som används. Undersökningen fokuserar på reningsprocessen i biogasproduktionen på små och mellanstora gårdar. Arbetet utfördes genom att ställa upp en energibalans över komponenterna i biogasproduktionen. Energibalansen användes för att skapa en matematisk modell av anläggningen, och beräkningarna gjordes med datorprogrammet Matlab. Den optimala metanhalten för biogasen beräknades till kring 80 % (78 – 83 %) vilket är lägre än den gräns på 85 % som rekommenderas av andra källor. Reningsanläggningens eget energibehov befanns motsvara 2,5 – 8,6 % av biogasens energiinnehåll, beroende på om högtryckskompression används eller inte. Dessa värden har god överensstämmelse med tidigare forskning. Den beräknade metanhalten är inte så låg så att motorernas livslängd förkortas nämnvärt, men det finns en risk för misständningar som kan ge skador på katalysatorn. Eftersom den beräknade metanhalten är lägre än 85 % är det lämpligt att genomföra ytterligare tester för att avgöra om gasen är lämplig som fordonsbränsle. Resultaten påverkas kraftigt av motorns verkningsgrad, vilket också är ett relevant ämne för framtida studier. / Biogas is a renewable fuel, and the demand for this particular fuel type is increasing around the world. In order to use biogas as a fuel for vehicles it must first be upgraded from its raw state. By separation of carbon dioxide and other impurities, the methane content in the raw biogas is increased so that the biogas can be used in engines. Several methods of purification exist, but this report mainly focuses on water scrubbing. This thesis aims to investigate the optimal methane content in biogas with respect to net energy and the lifespan of the engines that are being fueled with biogas. The focus of the report is on the purification process in biogas production for small to medium sized farms. The thesis is conducted by putting up an energy balance formula for the components in the biogas production system. This formula was used for creating a mathematical model of the system, and the calculations were made with the computer programme Matlab. The optimal methane content in the biogas was found to be around 80 % (78 – 83 %), which is less than the lower limit (85 %) that is recommended by other sources. The purification facility’s own energy demand corresponds to 2,5 – 8,6 % of the energy content in the biogas, depending on whether high pressure compression is used or not. These results are highly consistent with previous research. The methane content of the biogas does not reduce the lifespan of the engines notably, but there is a risk of ignition failures which could lead to damages in the catalyzer. Since the optimal methane content is lower than 85 %, it would be appropriate to test the biogas in order to analyze if it is suitable to be used as a fuel. The results are heavily influenced by the engine efficiency, which is also a relevant subject for future work.
|
322 |
Återanvända glasflaskor som fönster : En experimentell undersökning av glasflaskors tillämpning som fönster i bostadshus / Reused wine bottles as windowsLandmark, David, Singh, Amrat January 2016 (has links)
Vi blir fler och fler människor som delar på vår planet, och vi tär alltmer på de sinande naturresurser som finns tillgängliga. En fortsatt utveckling i denna riktning måste förhindras och ett steg åt rätt håll är att minska påfrestningarna av de naturresurser vi har. Genom att minska slit- och slängkonsumtionen, återvinna mer och återanvända förbrukade varor kan vi nå framsteg. Just återanvändning behandlas i detta kandidatexamensarbete, där syftet är att undersöka huruvida vinflaskor kan återanvändas som glasfönster. Inledningen av rapporten består av litteraturstudier som tar upp och beskriver värmeöverföringsfenomen som egenkonvektion, samt sätter in arbetet i ett perspektiv av hållbar utveckling. Ett av huvudmålen med arbetet är den praktiska tillämpning och därför har vi gjutit egna fönster med inmurade vinflaskor. Med hjälp av dessa vinflaskfönster har vi mätt både lux- och temperaturvärden, vilka används i beräkningar av ljusinsläpp och värmeöverföring genom fönstren. För värmeöverföringsberäkningarna har diverse formler rörande ledning och konvektion använts. I arbetet undersöktes två olika varianter av glasflaskor, hela glasflaskor samt avkapade glasflaskor. Efter litteraturstudier, experiment och beräkningar drogs slutsatsen att de hela glasflaskorna gav både högre ljusinsläpp och mindre värmeförluster.
|
323 |
Data Acquisition Architecture for HVDC GridsBjörk, Erik, Åkerberg, Viktor January 2016 (has links)
The climate crisis has caused many countries around the world to invest in large amounts of renewable energy. To be able to handle the intrinsic unreliability and geographic de- pendency of many renewable energy sources, HVDC technology is considered due to its low cost when transferring electricity across great distances. Traditional AC grids are controlled with 15-minute intervals at control centers, but HVDC grids require a faster control due to more power fluctuations within the grid. The aim of this project was to propose an architecture for a gateway in a control center for an HVDC grid. The gateway was programmed in C and C++ and the data was sent using UDP packets. Testing of the gateway was done using a real-time simulation of an HVDC grid. The data was sent with intervals smaller than a second which satisfied the speed requirements for this project. A gateway like the one developed in this project can be implemented at control centers to display and process data and to improve the overall reliability of an HVDC grid.
|
324 |
Solar PV in multi-family houses with battery storageRajasekaram, Nirushan, Costa, Vera January 2015 (has links)
This thesis investigates the economic viability of a grid connected PV system integrated with battery storage in a multifamily home in Sweden. In addition, a fleet of electric cars is added to the system and its economic feasibility is analyzed. The analysis is further classified based on the roof area available for PV installation, wherein system 1 considers nearly the entire roof area of 908 m2 and system 2 is assumed to have less than half the roof area of 360 m2 for PV installation. To help with the assessment, five scenarios are created; where scenario one represents a baseline Swedish cooperative without PV, scenario two includes a PV system; scenario three incorporates battery storage; four considers an electric vehicle fleet embedded into the system and scenario five has a fleet of gasoline cars. These scenarios are applied to the two systems and their results compared. To address the question of this thesis both scenarios 2 and 3 are simulated in System Advisor Model (SAM) and scenario 4 is modeled in Matlab. The outputs are exported to Excel in order to obtain the Net Present Value (NPV), which is the economic indicator for this assessment. In none of the tested scenarios the NPVs’ are positive and the best result is observed in a PV system installed with battery storage in a roof area of 360 m2, which has a NPV of -82,000 SEK. A sensitivity analysis is done to assess the changes in NPV by varying the input parameters. It is concluded that battery storage is not yet economically viable in a Swedish multifamily house.
|
325 |
A decentralized energy option for rural electrification - Using polygeneration in IndiaDharmala, Nikhilesh January 2015 (has links)
Electricity access is undeniably linked to equity and economic development especially among the rural communities. Clean cooking energy and safe drinking water are also essential for their socio-economic progress. When addressed in an integrated manner, interventions on these systems could have a wider impact. In this context, this study explores the feasibility and potential impacts of a polygeneration system that provides electricity, cooking gas and clean water to a rural village in India. Developed through a case study methodology, this thesis examines the potential of local resources for power generation and cooking. The system considers the use of electricity for water purification. With the help of a socio-economic survey and a field visit, the demand of electricity in the village is calculated. Based on the results from the resource estimation and demand survey, a polygeneration system with solar and biogas technologies has been designed using the techno-economic optimization software HOMER. The study also estimates ability and willingness to pay of the rural households for electricity. The willingness to pay estimate was based on a bidding game approach, and the influence of price and availability of existing fuels was also analyzed. Based on the existing socio- economic status and attitudes of the local population towards electricity use, potential impacts of polygeneration system on the lives of the villagers have been identified. The analysis concluded that a polygeneration system based on solar PV and biogas technologies is ideal for the village. The project has the potential to supply biogas to 60 % of the households. The levelized cost of electricity from such a system is calculated to be $/kWh 0.262, about five times higher than electricity paid by users connected to the national grid. Yet, the system provides an opportunity to bring energy and clean water services to the village where grid extension is unfeasible due to the particular topography of the region. With access to uninterrupted electricity, cleaner cooking fuels and clean water, the villagers are estimated to primarily benefit in terms of health, education, income generation, safety, entertainment, and comfort.
|
326 |
Small/medium scale hydropower implementation in developing countries: A Rwandan case studyForero, Carlos January 2014 (has links)
Small scale hydropower is one of the most cost-effective energy technologies to be considered for electrification in developing countries. The technology is very robust and mature so systems can last up to 50 years with little maintenance. Moreover, it has low environmental impacts and can have a significant benefit if implemented in rural areas for electricity production, either in on or off grid applications.The thesis reviews several small scale hydropower projects, in order to identify potential risks and propose guidelines to help future implementation of this technology in a better way than the one currently done. An on-going project was taken as a case study to identify different elements that have to be present in the planning and future development of small scale hydro projects in developing countries. Technical, managerial, socio-economical and environmental aspects around the project were analyzed within a sustainability framework.
|
327 |
Harvesting energy from the seaLeclercq, Mathilde January 2012 (has links)
Every marine energy source presents advantages and disadvantages. For example, they are not atthe same stage of maturity. Tidal range power is fully mature but the limited number of sitesavailable, combined with the large environmental impacts and investment costs limit itsdevelopment. The idea of artificial lagoons that will be offshore tidal range plant could create a newinterest for this technology. But for the moment, no plant of this type has been constructed yet. Tidalstream power is the next mature technology of marine energy after tidal range. Its development willrequire public subsidies but is supposed to be commercial in 2015. Systems are already indemonstration in several countries (UK, France and Canada). Wave power is less mature but it willbenefit from the development of tidal stream power and will probably be commercial in 2020. Somesystems are also in demonstration but challenges seem greater in wave power than in tidal power.Wave power conversion systems have to extract energy from the waves, even the largest ones, butat the same time resist to them. Contrary to tidal stream which has a predictable resource, waves areway less predictable and systems will have to be able to resist and valorize waves. OTEC (OceanThermal Energy Conversion) has been studied for years but it is still not mature. Its development forelectricity production needs technology research to develop cheaper and more compact systems(heat exchangers, pipes…). Air conditioning applications are developing and also require the use ofpipes and heat exchangers. Advances in this utilization could maybe help the development of OTECsystems for electricity production. Osmosis is the less mature and the most challenging technology. Atechnological breakthrough in the membrane could allow a rapid development. This breakthroughwill probably come from other sectors so it is important for the industries to get ready in order todevelop the system as soon as this technological improvement will be made.
|
328 |
Bifacial PV plants: performance model development and optimization of their configurationChiodetti, Matthieu January 2015 (has links)
Bifacial solar modules can absorb and convert solar irradiance to current on both their front side and back side. Several elements affects the bifacial yield, especially the ground albedo around the system or the installation configuration. In this document, investigations carried out at EDF R&D facilities regarding the use of bifacial modules in large scale PV farm are presented. Tests on the outdoor facilities were conducted to validate and improve a bifacial stand model developed under a Dymola/Modelica environement. Furthermore, a global optimization method was implemented to determine the optimal configuration of a large bifacial plant with modules facing south. Investigations showed the importance of a new albedo model to accurately evaluate the irradiance received on the rear side. The new model shows a relative error on the rear irradiance under 5% when compared with experimental data. Techno-economical optimization of a bifacial plant was conducted at different locations and for different ground albedo. The results shows that the gain on the specific production can vary between 7.2 and 14.2% for a bifacial plant when compared with a monofacial plant. Bifacial plants are expected to become more profitable than monofacial plants in some of the cases tested when their module cost will reach 68 c€/Wp.
|
329 |
Effect of Shading on Thin Film ModulesMISHRA, NISTHA January 2020 (has links)
The Photovoltaic (PV) systems and the semiconductor PV technologies are heavily impacted by shading conditions; total or partial. Nearby residential buildings, commercial buildings, objects, etc. are likely to cause shade on the PV installations. This study focuses on the evaluation of the effect of shading on thin-film PV modules, which were analyzed under two categories: single thin-film module and a string of modules installed at the University of Gävle, Sweden. The measurement was made by using METREL MI 3109 Euro test instrument. The study intends to help researchers to analyze the variation in the output performance parameters and behavior considering different types of shading on the thin-film modules. Experiments have been performed by creating full and partial shading (uniform and nonuniform) by using plastic foil, opaque board, wooden pole, and tape to emulate different types of natural shading conditions. The findings show a loss in power due to shading. In the single thin-film modules, which do not have any diode between the cells; reverse breakdown, power dissipation and generation of hot spots are caused by the cells which are partially shaded. In the string of modules installed at the University of Gävle, Sweden; under partial shading conditions the diodes are activated below certain voltage when current is high, leading to current bypass and therefore prevents the module from the damage caused by high heat generation. Under the condition of extremely low shading by a wooden pole, the diodes were not activated; however reverse breakdown was observed similar to the case of partial shading in single thin-film modules.
|
330 |
Uppvärmning med fjärrvärme och frånluftsvärmepump i småhus : En energi-, miljö- och kostnadsanalys för bostadsområdet Lindbacka i Gävle / Fulfill heat demand in houses with district heating and exhaust air heat pumpKarlberg, Madeleine January 2021 (has links)
In Gävle there exists a residential area called Lindbacka where some of the houses are supplied with heat from both district heating and exhaust air heat pump. Gävle Energi owns the district heating system in Gävle and are interested in evaluating the effects from a combined heating system. Based on that, the aim of this study has been to evaluate the impacts a combined system with both district heating and heat pump can have compared to if only one of the two is installed in a house. The thesis has studied these perspectives in an energy, environmental and economic analysis. The results from the energy analysis display that the heat losses in the district heating system relative to the amount of heat sold to customers are relatively large during the year, especially in the summer when the losses are larger than sold amount of energy. The results from the environmental analysis indicates that heat pumps have a larger climate impact during operation measured in tons of carbon dioxide equivalents compared to district heating. On the other hand, the economic analysis present heat pumps to be the cheapest heating option for a customer. The most expensive option for a customer is to install both an exhaust air heat pump and connect to the district heating system since this leads to double fixed and variable costs during the year. For Gävle Energi the economic analysis indicates that the investment cost of building the district heating system to Lindbacka was not profitable since the investment cost does not pay back in 30 years. Some of the houses in Lindbacka has been excluded in the thesis due to insufficient data. This will have an impact on the results in the thesis.
|
Page generated in 0.0362 seconds