• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 25
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 144
  • 144
  • 69
  • 65
  • 60
  • 55
  • 46
  • 40
  • 33
  • 31
  • 29
  • 28
  • 27
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

APPLYING HEAT PIPES TO INSTALL NATURAL CONVECTION AND RADIATIVE COOLING ON CONCENTRATING PHOTOVOLTAICS.

Saleh Abdullah Basamad Sr. (13163391) 28 July 2022 (has links)
<p>  </p> <p>  </p> <p>Concentrator photovoltaics have demonstrated greater solar energy production efficiency than previous solar electric technologies.  However, recent research reveals that heat management is a significant difficulty in CPV systems, and if left unaddressed, it can have a severe influence on system efficiency and lifetime. Traditional CPV cooling relies on active methods such as forced air convection, or liquid cooling, which might lead to an extremely large parasitic power use. In addition, the moving parts of a cooling system result in a shorter lifespan and higher maintenance expenses. </p> <p><br></p> <p>CPV systems can boost their efficiency and lifespan by adopting passive cooling solutions. This work employed radiative cooling and natural convection to construct an efficient and cost-effective cooling system. The excess heat of a solar cell can be dispersed into space via electromagnetic waves via radiative cooling. Due to the fact that the radiative cooling power is related to the difference between the fourth powers of the solar cell and the ambient temperature, much greater cooling powers can be obtained at higher temperatures. Heat pipes were installed to act as a heat pump by transferring excessive heat from solar cells within a system to the exterior, where it can be dissipated via natural air cooling and thermal radiation. Experiments conducted in this study demonstrate that a temperature reduction of 21 ◦C was accomplished through radiative cooling and natural convection, resulting in an increase of 64 mV, or 17% in the open-circuit voltage of a GaSb solar cell.</p>
102

DFIG-BASED SPLIT-SHAFT WIND ENERGY CONVERSION SYSTEMS

Rasoul Akbari (13157394) 27 July 2022 (has links)
<p>In this research, a Split-Shaft Wind Energy Conversion System (SS-WECS) is investigated</p> <p>to improve the performance and cost of the system and reduce the wind power</p> <p>uncertainty influences on the power grid. This system utilizes a lightweight Hydraulic Transmission</p> <p>System (HTS) instead of the traditional gearbox and uses a Doubly-Fed Induction</p> <p>Generator (DFIG) instead of a synchronous generator. This type of wind turbine provides</p> <p>several benefits, including decoupling the shaft speed controls at the turbine and the generator.</p> <p>Hence, maintaining the generator’s frequency and seeking maximum power point</p> <p>can be accomplished independently. The frequency control relies on the mechanical torque</p> <p>adjustment on the hydraulic motor that is coupled with the generator. This research provides</p> <p>modeling of an SS-WECS to show its dependence on mechanical torque and a control</p> <p>technique to realize the mechanical torque adjustments utilizing a Doubly-Fed Induction</p> <p>Generator (DFIG). To this end, a vector control technique is employed, and the generator</p> <p>electrical torque is controlled to adjust the frequency while the wind turbine dynamics</p> <p>influence the system operation. The results demonstrate that the generator’s frequency is</p> <p>maintained under any wind speed experienced at the turbine.</p> <p>Next, to reduce the size of power converters required for controlling DFIG, this research</p> <p>introduces a control technique that allows achieving MPPT in a narrow window of generator</p> <p>speed in an SS-WECS. Consequently, the size of the power converters is reduced</p> <p>significantly. The proposed configuration is investigated by analytical calculations and simulations</p> <p>to demonstrate the reduced size of the converter and dynamic performance of the</p> <p>power generation. Furthermore, a new configuration is proposed to eliminate the Grid-</p> <p>Side Converter (GSC). This configuration employs only a reduced-size Rotor-Side Converter</p> <p>(RSC) in tandem with a supercapacitor. This is accomplished by employing the hydraulic</p> <p>transmission system (HTS) as a continuously variable and shaft decoupling transmission</p> <p>unit. In this configuration, the speed of the DFIG is controlled by the RSC to regulate the</p> <p>supercapacitor voltage without GSC. The proposed system is investigated and simulated in</p> <p>MATLAB Simulink at various wind speeds to validate the results.</p> <p>Next, to reduce the wind power uncertainty, this research introduces an SS-WECS where the system’s inertia is adjusted to store the energy. Accordingly, a flywheel is mechanically</p> <p>coupled with the rotor of the DFIG. Employing the HTS in such a configuration allows the</p> <p>turbine controller to track the point of maximum power (MPPT) while the generator controller</p> <p>can adjust the generator speed. As a result, the flywheel, which is directly connected</p> <p>to the shaft of the generator, can be charged and discharged by controlling the generator</p> <p>speed. In this process, the flywheel energy can be used to modify the electric power generation</p> <p>of the generator on-demand. This improves the quality of injected power to the</p> <p>grid. Furthermore, the structure of the flywheel energy storage is simplified by removing</p> <p>its dedicated motor/generator and the power electronics driver. Two separate supervisory</p> <p>controllers are developed using fuzzy logic regulators to generate a real-time output power</p> <p>reference. Furthermore, small-signal models are developed to analyze and improve the MPPT</p> <p>controller. Extensive simulation results demonstrate the feasibility of such a system and its</p> <p>improved quality of power generation.</p> <p>Next, an integrated Hybrid Energy Storage System (HESS) is developed to support the</p> <p>new DFIG excitation system in the SS-WECS. The goal is to improve the power quality</p> <p>while significantly reducing the generator excitation power rating and component counts.</p> <p>Therefore, the rotor excitation circuit is modified to add the storage to its DC link directly.</p> <p>In this configuration, the output power fluctuation is attenuated solely by utilizing the RSC,</p> <p>making it self-sufficient from the grid connection. The storage characteristics are identified</p> <p>based on several system design parameters, including the system inertia, inverter capacity,</p> <p>and energy storage capacity. The obtained power generation characteristics suggest an energy</p> <p>storage system as a mix of fast-acting types and a high energy capacity with moderate</p> <p>acting time. Then, a feedback controller is designed to maintain the charge in the storage</p> <p>within the required limits. Additionally, an adaptive model-predictive controller is developed</p> <p>to reduce power generation fluctuations. The proposed system is investigated and simulated</p> <p>in MATLAB Simulink at various wind speeds to validate the results and demonstrate the</p> <p>system’s dynamic performance. It is shown that the system’s inertia is critical to damping</p> <p>the high-frequency oscillations of the wind power fluctuations. Then, an optimization approach</p> <p>using the Response Surface Method (RSM) is conducted to minimize the annualized</p> <p>cost of the Hybrid Energy Storage System (HESS); consisting of a flywheel, supercapacitor, and battery. The goal is to smooth out the output power fluctuations by the optimal</p> <p>size of the HESS. Thus, a 1.5 MW hydraulic wind turbine is simulated, and the HESS is</p> <p>configured and optimized. The direct connection of the flywheel allows reaching a suitable</p> <p>level of smoothness at a reasonable cost. The proposed configuration is compared with the</p> <p>conventional storage, and the results demonstrate that the proposed integrated HESS can</p> <p>decrease the annualized storage cost by 71 %.</p> <p>Finally, this research investigates the effects of the reduced-size RSC on the Low Voltage</p> <p>Ride Through (LVRT) capabilities required from all wind turbines. One of the significant</p> <p>achievements of an SS-WECS is the reduced size excitation circuit. The grid side converter is</p> <p>eliminated, and the size of the rotor side converter (RSC) can be safely reduced to a fraction</p> <p>of a full-size excitation. Therefore, this low-power-rated converter operates at low voltage</p> <p>and handles the regular operation well. However, the fault conditions may expose conditions</p> <p>on the converter and push it to its limits. Therefore, four different protection circuits are</p> <p>employed, and their effects are investigated and compared to evaluate their performance.</p> <p>These four protection circuits include the active crowbar, active crowbar along a resistorinductor</p> <p>circuit (C-RL), series dynamic resistor (SDR), and new-bridge fault current limiter</p> <p>(NBFCL). The wind turbine controllers are also adapted to reduce the impact of the fault</p> <p>on the power electronic converters. One of the effective methods is to store the excess energy</p> <p>in the generator’s rotor. Finally, the proposed LVRT strategies are simulated in MATLAB</p> <p>Simulink to validate the results and demonstrate their effectiveness and functionality.</p>
103

Thermal Management Implications Of Utility Scale Battery Energy Storage Systems

Mohammad Aquib Zafar (16889376) 08 May 2024 (has links)
<p dir="ltr">The need for reducing reliance on fossil fuels to meet ever-increasing energy demands and minimizing global climate change due to greenhouse gas emissions has led to an increase in investments in Variable Energy Resources (VREs), such as wind and solar. But due to the unreliable nature of VREs, an energy storage system must be coupled with it which drives up the investment cost.</p><p dir="ltr">Lithium-ion batteries are compact, modular, and have high cyclic efficiency, making them an ideal choice for energy storage systems. However, they are susceptible to capacity loss over the years, limiting the total life of the batteries to 15-18 years only, after which they must be safely discarded or recycled. Hence, designing a Battery Energy Storage System (BESS) should consider all aspects, such as battery life, investment cost, energy efficiency, etc.</p><p dir="ltr">Most of the available studies on cost and lifetime of BESS either consider a steady degradation rate over years, or do not account for it at all, they take constant charge/discharge cycles, and sometimes do not consider ambient temperature too. This may result in an error in estimation of the cost of energy storage. The location where the BESS is supposed to be installed can also impact its life, given that each location has its own power consumption trend and temperature profile. In this work, we attempt to simulate a BESS by considering the ambient temperature, degradation rate and energy usage. This will help in getting an insight of a more realistic estimate of levelized cost of storage and for estimating the thermal energy needed to keep them within a certain temperature range, so that they can last longer.</p>
104

<b>A Computational Study of Laminar Counterflow Flames</b>

Kole Allen Pempek (18436221) 27 April 2024 (has links)
<p dir="ltr">Counterflow diffusion flames have been studied in depth as a one-dimensional flame, and are often used to study chemical kinetics, soot formation, and extinction and ignition characteristics of flames because of the low computing costs associated with one dimensional computations. Further, strained flames have been used in models of turbulent flames with the assumption that the underlying chemistry can be represented by a limited number of variables. Detailed three dimensional simulations of H<sub>2</sub>/CH<sub>4</sub>/air counterflow diffusion flames are performed using CONVERGE CFD [41] and compared to one dimensional simulation and experimental Dual-Pump Coherent anti-Stokes Raman Scattering (DPCARS) measurements of temperature and normalized mole fractions of H<sub>2</sub> and O<sub>2</sub>[37]. The multi-dimensional effects of differential and advective diffusion are explored. The effects of boundary conditions far from the centerline axis of the burner one flow field and flame shape are investigated.</p>
105

DYNAMIC MODELING OF INVERTER-BASED ANDELECTROMECHANICAL POWER GENERATION COMPONENTS USING A SPARSE TABLEAU APPROACH

Oindrilla Sanyal (18831502) 14 June 2024 (has links)
<p>The ongoing and rapidly accelerating integration of inverter-based resources (IBRs), such as solar panels, into power distribution systems has heightened the importance of computational tools that can be used to study the dynamics of such systems. IBRs use power electronics to interface the energy sources to the grid, thereby introducing faster dynamics than their electromechanical counterparts, which could lead to instabilities in distribution systems and microgrids. Hence, there is a need for conducting simulations of distribution systems containing large numbers of single- and three-phase inverters, which could be operating under either grid-following or grid-forming modes.</p> <p>A key objective of this thesis is to derive detailed, high-fidelity models of inverters and their controls in the context of unbalanced distribution networks. In addition, a diesel synchronous generator model is derived, for the sake of completeness. The main contribution of this work is that these models are developed for use in a novel simulation toolbox called Dynamic Simulation Tool using a Sparse Tableau Approach in Python, DynaSTPy (pronounced dynasty). This thesis outlines how the components can be modeled in the sparse tableau framework as electrical networks with topology described using a node-branch incidence matrix. In addition, the thesis explains how controller dynamics and constraints can be handled within this framework. These models are tailored to seamlessly integrate into the DynaSTPy toolbox. The proposed approach can be readily extended to model other such components in the future.</p>
106

Reduced Degradation of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> Solar Cells by Graphene Encapsulation

Kyle Reiter (6639662) 14 May 2019 (has links)
<div> <div> <div> <p>Organic-inorganic halide perovskite solar cells have increased efficiencies substantially (from 3% to > 22%), within a few years. However, these solar cells degrade very rapidly due to humidity and no longer are capable of converting photons into electrons. Methylammonium Lead Triiodide (CH3NH3PbI3 or MAPbI3) is the most common type of halide perovskite solar cell and is the crystal studied in this thesis. Graphene is an effective encapsulation method of MAPbI3 perovskite to reduce degradation, while also being advantageous because of its excellent optical and conductive properties. Using a PMMA transfer method graphene was chemical vapor depostion (CVD) grown graphene was transferred onto MAPbI3 and reduced the MAPbI3 degradation rate by over 400%. The PMMA transfer method in this study is scalable for roll-to- roll manufacturing with fewer cracks, impurites, and folds improving upon dry transfer methods. To characterize degradation a fluorescent microscope was used to capture photoluminescence data at initial creation of the samples up to 528 hours of 80% humidity exposure. Atomic force microscopy was used to characterize topographical changes during degradation. The study proves that CVD graphene is an effective encapsulation method for reducing degradation of MAPbI3 due to humidity and retained 95.3% of its initial PL intensity after 384 hours of 80% humidity exposure. Furthermore, after 216 hours of 80% humidity exposure CVD graphene encapsulated MAPbI3 retained 80.2% of its initial number of peaks, and only saw a 35.1% increase in surface height. Comparatively, pristine MAPbI3 only retained 16% of its initial number of peaks and saw a 159% increase in surface height. </p> </div> </div> </div>
107

Mesoscale Interactions in Porous Electrodes

Aashutosh Mistry (6630413) 11 June 2019 (has links)
Despite the central importance of porous electrodes to any advanced electrochemical system, there is no clear answer to “<i>How to make the best electrode</i>?”. The source of ambiguity lies in the incomplete understanding of convoluted material interactions at smaller – difficult to observe length and timescales. Such mesoscopic interactions, however, abide by the fundamental physical principles such as mass conservation. The porous electrodes are investigated in such a physics-based setting to comprehend the interplay among structural arrangement and off-equilibrium processes. As a result, a synergistic approach exploiting the complementary characteristics of controlled experiments and theoretical analysis emerges to allow mechanistic insights into the associated mesoscopic phenomena. The potential of this philosophy is presented by investigating three distinct electrochemical systems with their unique peculiarities.
108

Avaliação legal, ambiental e econômico-financeira da implantação de sistema próprio de tratamento de resíduos de serviços de saúde no HC-FMRP-USP para geração de energia / Legal, environmental and economic-financial assessment to implement a private system to treat medical waste at HC-FMRP-USP in order to generate energy

Novi, Juliana Chiaretti 12 January 2012 (has links)
Encontrar soluções para a problemática dos resíduos e, em virtude da crescente demanda por energia, diminuir a dependência dos combustíveis fósseis têm constituído grandes desafios para os pesquisadores. O setor hospitalar é um potencial gerador dos chamados Resíduos de Serviços de Saúde (RSS) que também apresenta um alto consumo de energia em decorrência do seu período de funcionamento e de equipamentos que necessitam de infraestrutura adequada. Apesar de representarem uma pequena parcela perante o montante dos Resíduos Sólidos Urbanos (RSU), no Brasil, nem todos os geradores se preocupam com seu tratamento e destinação final. O emprego de tecnologias desenvolvidas para o tratamento desses resíduos com a possibilidade de recuperação energética deve ser avaliado. O Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto (HC-FMRP-USP) gera cerca de 1,9 ton/dia de RSS. Nesse contexto, o objetivo geral desta pesquisa foi avaliar a viabilidade legal, ambiental e econômico-financeira da implantação de um sistema próprio de tratamento de RSS no HCFMRP- USP para geração de energia. A metodologia foi estruturada em pesquisa exploratória, coleta de dados por meio de entrevistas semi-estruturadas com responsáveis pelo setor dos RSS no hospital, com pesquisadores da área da saúde, de escolas de engenharia, órgãos técnicos e indústrias fabricantes dos equipamentos; levantamento bibliográfico e análise de conteúdo. Para a avaliação econômico-financeira, foi empregada a avaliação custoefetividade. Estudos comparativos sobre os tipos de tratamento disponíveis e utilizados nacionalmente foram considerados. Assim, o processo que melhor se adequou ao sistema proposto foi o da incineração com tecnologia de gaseificação e combustão combinadas (GCC). Os resultados demonstraram que o sistema proposto está sob a égide da lei contemplando, inclusive, a Política Nacional de Resíduos Sólidos (PNRS), desde que mediante anuência do Conselho Gestor do campus da USP e de sua Comissão de Meio Ambiente, além do devido processo de licenciamento ambiental junto à CETESB e pré-análise dos RSS. Contudo, sob o aspecto ambiental há questões públicas e políticas sobre a aceitação de sua implantação no complexo hospitalar. Embora haja o emprego de avançada tecnologia, o equipamento avaliado necessita de instalação, manutenção e monitoramento adequados por profissionais capacitados para operá-los, a fim de se evitar possíveis danos às pessoas e ao meio-ambiente, para isso, os envolvidos devem agir com responsabilidade. Por fim, sob o aspecto econômico-financeiro houve um empate técnico entre os custos do tratamento realizado atualmente e os da proposta do investimento. Assim, esse último aspecto avaliado incidiu sobre o benefício implícito da decisão de se implantar ou não o processo. Portanto, considera-se a viabilidade da implantação de um sistema próprio para tratamento de RSS no HCFMRP-USP para geração de energia sob os três aspectos: legal, ambiental e econômicofinanceiro. / Finding solutions to the waste problem and reducing dependence on fossil fuels due to the growing demand for energy have become big challenges for researchers to deal with. Hospitals are large producers of Medical waste (MW) and also big energy consumers due to their long running hours and the running of equipment that demands adequate infrastructure. Despite accounting for a small share of all the Municipal Solid Waste (MSW) not all producers, in Brazil, are concerned about waste treatment and its final destination. The use of technologies developed with the aim of treating such waste in order to generate energy has to be assessed. The Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto (HCFMRP-USP) generates around 1.9 tons of waste per day. In this context, the general aim of this research program was to assess the legal, environmental and economic-financial feasibility of the implementation of a private system of biomedical waste treatment at HCFMRP-USP in order to generate energy. The method was structured in exploratory research, data gathering by means of semi-structured interviews with MW department staff at the hospital, with Health researchers, with Engineering College researchers, technical organizations and equipment manufacturers, besides bibliographic referencing and content analysis. Cost-effectiveness analysis was used for the economic-financial analysis. Comparative studies of the types of treatment available and used nationwide were taken into consideration. Thus, the process which best suited the proposed system was that of incineration by means of Gasification Combined Cycle (GCC). Results showed that the proposed system is under the support of Law and it also takes into consideration the National Policy for Solid Waste (NPSW), provided that it has the approval of the Director Council of the Administration of the campus of USP and of its Environment Committee as well as appropriate environmental licenses granted by CETESB and pre-analysis of MW. However, under the environmental aspect, there are public and political issues regarding the acceptance of this implementation in the hospital premises. Although there is the use of advanced technology, the equipment which was assessed needs to be installed, maintained and monitored adequately by professionals trained to operate it so as to avoid possible damage to humans and the environment. Staff involved must be responsible. Finally, under the economic-financial aspect there was a draw between the costs of the treatment conducted at present and those of the proposed investment. Therefore, this last aspect assessed prevailed over the implicit benefit of the decision on whether to implement the process or not. However, the feasibility of the implementation of a private MW treatment system at HC-FMRP-USP in order to generate energy is to be considered under the legal, environmental and economicfinancial aspects.
109

AVALIAÇÃO PROBABILÍSTICA DO IMPACTO DA GERAÇÃO DISTRIBUÍDA EÓLICA NOS AFUNDAMENTOS DE TENSÃO DE CURTA DURAÇÃO. / PROBABILISTIC ASSESSMENT OF THE IMPACT OF DISTRIBUTED GENERATION WIND POWER IN THE SHORT TERM VOLTAGE SAGS .

SILVA, Tiago Alencar 09 November 2012 (has links)
Submitted by Maria Aparecida (cidazen@gmail.com) on 2017-08-29T13:12:16Z No. of bitstreams: 1 Tiago Silva.pdf: 3175763 bytes, checksum: 8eba0f17a1a1f6fa2606a5235969987e (MD5) / Made available in DSpace on 2017-08-29T13:12:16Z (GMT). No. of bitstreams: 1 Tiago Silva.pdf: 3175763 bytes, checksum: 8eba0f17a1a1f6fa2606a5235969987e (MD5) Previous issue date: 2012-11-09 / CNPQ / The Distributed Generation (DG) can improve the power quality indices associated with Short Duration Voltage Variations (SDVV) due to the reduction in the electric network loading, which in turn causes an improvement in the pre-fault voltage profile. On the other hand, the DG can also deteriorates the power quality indices related to SDVV due to the increasing in the fault currents, which in turns reduce the post-fault voltages. Furthermore, the assessment of the DG impact on SDVV is more difficult with the presence of renewable energy resources. This complexity is due to fluctuations in output power caused by stochastic variations in the primary energy source (sun, wind, tide levels, etc.). Additionally, the bibliographical review on Predictive Assessment of Short Duration Voltage Variations (PAVV) revealed that none of the existing methodology considered the impact of fluctuations in the output power of a wind DG on power quality indices related to SDVV. It was also noticed that the load variations during the study period are ignored in the papers on SDVV. The existence of these deficiencies and the governmental incentives for the use of wind generation motivated this research. The main aim of this dissertation is the development of a methodology for the PAVV capable of recognizing uncertainties associated with wind DG and load fluctuations. The modeling of these uncertainties was carried out using NonSequential Monte Carlo Simulation (MCS). The nodal voltages in the fault scenarios generated by MCS were evaluated using the Admittance Summation Method (ASM) in phase coordinates. The combination of the MCS with the ASM allowed estimating the following indices related to SDVV: the expected value of the SARFI (“System Average RMS – Variation – Frequency Index”) and expected nodal frequency of SDVV. Furthermore, the probability distributions and box plots of the SARFI index have been obtained. The proposed method for the PAVV was tested and validated in a test system with 32 buses. The tests results demonstrated that the DG insertion causes an improvement in the power quality indices associated with SDVV. Additionally, the substitution of conventional DG by wind DG cause a small deterioration in the power quality indices related to SDVV due to fluctuations in the output power of the wind DG. Finally, it was observed that the load fluctuations during the study period cause significant variations in the SARFI index. / A Geração Distribuída (GD) pode melhorar os índices de qualidade de energia associados com as Variações de Tensão de Curta Duração (VTCD) devido a redução no carregamento da rede elétrica, que por sua vez causa uma melhoria no perfil de tensão pré- falta. Por outro lado, a GD também pode degradar os índices de qualidade de energia associados com VTCD devido ao aumento nas correntes de falta, que por sua vez reduzem as tensões pós-falta. Além disso, a avaliação do impacto da DG sobre VTCD é mais difícil com a presença de fontes de energia renováveis. Esta complexidade se deve as flutuações na potência de saída causadas pelas variações estocásticas na fonte de energia primária (sol, vento, níveis de maré, etc.). Adicionalmente, a revisão bibliográfica realizada sobre Avaliação Preditiva de VTCD (APVT) revelou que nenhuma metodologia existente considerou o impacto de flutuações na potência de saída de geradores eólicos nos índices de qualidade referentes às VTCD. Também foi observado que flutuações de carga ao longo do período de estudo são desconsideradas nos artigos sobre APVT. A existência destas deficiências nos métodos de APVT e os incentivos governamentais para o uso de geração eólica motivaram esta pesquisa. O principal objetivo desta dissertação é o desenvolvimento de uma metodologia para a APVT capaz de reconhecer as incertezas associadas com a GD eólica e flutuações de carga. A modelagem destas incertezas na APVT foi realizada através do uso da Simulação Monte Carlo (SMC) não-sequencial. As tensões nodais nos cenários de falta gerados pela Simulação Monte Carlo (SMC) foram calculadas usando-se o Método de Soma de Admitância (MSA) em coordenadas de fase. A combinação da SMC com o MSA permitiu estimar os seguintes índices probabilísticos relacionados com as VTCD: valor esperado do SARFI (“System Average RMS – Variation – Frequency Index”) e frequência nodal esperada de VTCD. Além disso, foram obtidas distribuições de probabilidade e diagramas de caixa associados com o SARFI. O método proposto nesta dissertação para a APVT foi testado em uma rede de distribuição de 32 barras. Os resultados dos testes mostram que a inserção de GD causa uma melhoria nos índices de qualidade associados com as VTCD. Adicionalmente, a substituição de GD convencional por GD eólica causa uma pequena deterioração nos índices de qualidade referentes às VTCD devido as flutuações na potência de saída da GD eólica. Finalmente, também foi observado que as flutuações na carga ao longo do período de estudo causam variações significativas no índice SARFI.
110

North American wood supply and demand : is there enough?

Pearson, Alexander Svend 02 December 2009 (has links)
The North American forest industry has long been an important part of North America’s economy. The industry has traditionally been the only industrial demand on timberland creating a long established balance between the supply (timberland) and the demand (manufacturing). Recently the forest industry has been troubled due to the collapse of the solid wood products largest market, housing, and a global recession. These troubled times have lead many operation in the industry to curtail operations. Since the industry curtailed, high oil prices and increasing environmental concern have advocated the investment in renewable energy sources. As a renewable energy source, biomass holds great potential for satisfying a portion of our continental energy demands. This increased demand for timberland products could be very profitable to the timberland owners but also holds many concerns to the extent of additional supply that can be harvested from our timberlands. Further complicating the balance of supply and demand are the large global and domestic effects that are reducing the total amount of timberland and increasing the demand for the remaining timberlands. The supply and demand changes have the potential to make the forest industry evermore important part of the North American economy but care must be taken to not over extend our resources.

Page generated in 0.093 seconds