Spelling suggestions: "subject:"engineered"" "subject:"enmgineered""
121 |
Fate of Six Neonicotinoids During Full-scale Wastewater Treatment and Passage Through an Engineered WetlandJanuary 2015 (has links)
abstract: Six high-production-volume neonicotinoids were traced through a municipal wastewater treatment plant (WWTP) and engineered wetland located downstream, in a study motivated by reports on these insecticides posing threats to non-target invertebrate species and potentially playing a role in the global honeybee colony collapse disorder. An array of automated samplers was deployed in a five-day monitoring campaign and resultant flow-weighted samples were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) using the isotope dilution method. Concentrations in WWTP influent and effluent were 54.7 ± 2.9 and 48.6 ± 2.7 ng/L for imidacloprid, respectively, and 3.7 ± 0.3 and 1.8 ± 0.1 ng/L for acetamiprid, respectively. A mass balance over the WWTP showed no (p=0.09, CI = 95%) removal of imidacloprid, and 56 ± 6% aqueous removal of acetamiprid. In the constructed wetland downstream, a lack of removal was noted for both imidacloprid (from 54.4 ± 3.4 ng/L to 49.9 ± 14.6 ng/L) and acetamiprid (from 2.00 ± 0.03 ng/L to 2.30 ± 0.21 ng/L). Clothianidin was detected only inconsistently in the WWTP and wetland (>2 to 288 ng/L; 60% detection frequency), whereas thiamethoxam (<10 ng/L), thiacloprid (<2 ng/L), and dinotefuran (<180 ng/L) were not detected at all. Thus, imidacloprid and acetamiprid were identified as recalcitrant sewage constituents (estimated U.S. WWTP discharge of 1920- 4780 kg/y) that persist during conventional wastewater treatment to enter U.S. surface waters at potentially harmful concentrations. / Dissertation/Thesis / Masters Thesis Civil and Environmental Engineering 2015
|
122 |
Rheological behavior of engineered cementitions composites reinforced with PVA fibers. / Comportamento reológico de compósitos cimentícios engenheirados reforçados com fibras de PVA.Marylinda Santos de França 10 July 2018 (has links)
The rheological behavior analysis of Engineered Cementitious Composites (ECC) is key to understand how the different preparation techniques affect the composite mechanical performance. However, the rheological assessment of reinforced materials becomes more complex since fibers usually cause flow disturbances not found in nonreinforced cementitious materials. Besides that, simple workability measurement techniques are not able to fully understand the composite behavior in the fresh state creating the need for more precise techniques to be employed. The main objectives of this study were to evaluate the ECC rheological behavior using different rheometer devices (Vane system and Ball measuring system) and investigate the influence of mixing processes on the fiber homogenization and rheological behavior. Additionally to this, a link between rheological behavior and mechanical performance was investigated. In the end, the ball measuring system revealed to be more efficient than the vane system when evaluating the composite rheological behavior. In addition, the mixing process influenced the rheological behavior of PVA-ECC especially regarding the moment which fibers are added. Fiber addition after mortar mixture improved fibers homogenization and reduced mixing energy by around 8%. Moreover, a correlation between rheological and mechanical properties showed that a 2-times variation in either yield stress or viscosity can lead to a variation of more than 50% in flexural strength without significantly affecting the composite compressive strength. It was also found that the lower the composite yield stress and viscosity the higher was its ultimate strain. To conclude, all those parameters contributed to understand the composite rheological behavior and globally optimize its performance. / Sem resumo
|
123 |
Probing Nano-Specific Interactions Between Bacteria and Antimicrobial Nanoparticles Using Microbial Community Changes and Gene ExpressionMoore, Joe Dallas 01 December 2017 (has links)
Antimicrobial engineered nanomaterials (ENM) are increasingly incorporated into products despite limited understanding of the interactions between ENMs and bacteria that lead to toxic impacts. The hazard posed by increasing environmental release of antimicrobial ENMs is also poorly characterized. The overall objective of this thesis is to inform questions about the types of interactions that lead to an ENM inducing bacterial toxicity. Many antimicrobial ENMs are soluble, and the ion plays an important role in their toxicity. Some believe that, beyond release of ions, ENM toxicity is expected to derive from a nanoparticle (NP)-specific effect. This research compares bacterial responses to ENMs, their metal salts, and/or their transformed species within different experimental settings to improve our understanding of the interactions that enable ENM bacterial toxicity. The first objective is to characterize the potential hazard posed by pristine and transformed antimicrobial ENMs on microbial communities within a complex environmental system. One pair of ENMs (Ag0 and Ag2S) led to differential short-term impacts on surficial sediment microbial communities, while the other did not (CuO and CuS), showing that ENM transformation does not universally lead to distinct impacts. The metal ion (Cu2+) had a more profound microbial community impact than did any of the four ENMs. By 300 days the microbial community structure and composition re-converged, suggesting minimal long-term impacts of high pulse inputs of antimicrobial ENMs on microbial communities within complex environments. The second objective is to identify NP-specific effects of a common antimicrobial ENM on a model bacterium. Analysis of transcriptional responses identified NP-specific induction of a membrane stress responsive gene, providing evidence of a NP-specific effect. Otherwise, our results suggest that CuO NP toxicity triggers the same stress responses as does Cu2+, but at more moderate levels. Two ion treatments with the same total Cu input – one with pulse addition and one with gradual addition that was meant to better represent the slow dissolution of the CuO NP – led to temporally distinct responses. This calls for the use of more representative ion controls for comparison against soluble NP impacts in future nanotoxicity studies. The third objective is to investigate the potential use of CuO ENMs to reduce virulence and growth of an emerging bacterial pathogen. CuO NP exposure led to reduction in relative expression of three Staphylococcus aureus virulence factor genes, especially in methicillinresistant S. aureus (MRSA) clinical isolates. Growth was inhibited at high CuO NP concentrations for all four isolates, too. Comparison across all genes assayed showed isolatespecific transcriptional responses, but with NP- and ion-induced responses showing clear differences for each isolate, too. Altogether, this research contributes novel knowledge that will guide efforts to characterize potential hazard from release of ENMs into the environment and to apply ENMs for effective antibacterial treatment.
|
124 |
Enhanced Anchorage of Tissue-Engineered Cartilage Using an Osteoinductive ApproachDua, Rupak 22 January 2014 (has links)
Articular cartilage injuries occur frequently in the knee joint. Several methods have been implemented clinically, to treat osteochondral defects but none have been able to produce a long term, durable solution. Photopolymerizable cartilage tissue engineering approaches appear promising; however, fundamentally, forming a stable interface between the tissue engineered cartilage and native tissue, mainly subchondral bone and native cartilage, remains a major challenge. The overall objective of this research is to find a solution for the current problem of dislodgment of tissue engineered cartilage at the defect site for the treatment of degraded cartilage that has been caused due to knee injuries or because of mild to moderate level of osteoarthritis. For this, an in-vitro model was created to analyze the integration of tissue engineered cartilage with the bone, healthy and diseased cartilage over time. We investigated the utility of hydroxyapatite (HA) nanoparticles to promote controlled bone-growth across the bone-cartilage interface in an in vitro engineered tissue model system using bone marrow derived stem cells. We also investigated the application of HA nanoparticles to promote enhance integration between tissue engineered cartilage and native cartilage both in healthy and diseased states. Samples incorporated with HA demonstrated significantly higher interfacial shear strength (at the junction between engineered cartilage and engineered bone and also with diseased cartilage) compared to the constructs without HA (p < 0.05), after 28 days of culture. These findings indicate that the incorporation of HA nanoparticles permits more stable anchorage of the injectable hydrogel-based engineered cartilage construct via augmented integration between bone and cartilage.
|
125 |
Lateral Torsional Buckling of Wood I-JoistSt-Amour, Rémi January 2016 (has links)
Engineered wood I-joists have grown in popularity as flooring and roofing structural systems in the past 30 years, replacing solid sawn lumber joists. Typical wood I-joists are manufactured with a very slender section, which is desirable to achieve higher flexural capacities and longer spans; however, this makes them susceptible to lateral torsional buckling failure. Continuous beam spans and uplift forces on roof uplift are potential scenarios where lateral instability can occur and reflects the need to investigate the lateral torsional buckling behavior of wood I-joists. Within this context, the present study conducts an experimental investigation on the material properties and the critical buckling load of 42 wood I-joist specimens. A 3D finite element model is built using the experimentally determined material parameters to effectively predict the observed buckling behavior of the specimens while also accounting for initial imperfections in the joists. The adequacy of other analytical models to predict the critical buckling load of wood I-joists are also investigated. It is demonstrated that the American design standard underestimates the critical buckling load of wood I-joists while the classical theory provides an adequate estimate of the buckling capacity. Furthermore, the effects of initial imperfections on the lateral torsional buckling behavior are discussed. The developed and verified FE model is used to reproduce the nonlinear buckling behavior of the wood I-joist and also to provide an accurate estimate of the lateral torsional buckling capacity using the linear buckling analysis.
|
126 |
Constitutive Modeling for Tissue Engineered Heart RepairKalhöfer-Köchling, Moritz 25 September 2020 (has links)
No description available.
|
127 |
Fabrication of Multi-Material Structures Using Ultrasonic Consolidation and Laser-Engineered Net ShapingObielodan, John Olorunshola 01 December 2010 (has links)
This research explores the use of two additive manufacturing processes for the fabrication of multi-material structures. Ultrasonic consolidation (UC) and laser- engineered net shaping (LENS) processes were used for parallel systematic investigations of the process parameters and methodologies for the development of multi-material structures.
The UC process uses ultrasonic energy at low temperature to bond metallic foils. A wide range of metallic materials including nickel; titanium; copper; molybdenum; tantalum; MetPreg®; silver; stainless steel; and aluminum alloys 1100, 3003, and 6061 were bonded in different combinations. Material domains are inherently discrete in ultrasonically consolidated structures. The mechanical properties of some of the bonded structures were characterized to lay the groundwork for their real-life applications.
LENS uses a laser beam to deposit metallic powder materials for the fabrication of fully dense structures. Mechanical testing was used to characterize the flexural and tensile properties of dual-material structures made of Ti6Al4V/10wt%TiC composite and Ti6Al4V materials. Experimental results show that the strength of transition joints in multi-material structures significantly depends on the joint design.
Dual-material minimum weight structures, representing geometrically and materially complex structures, were fabricated using the results of the process parameters and fabrication methodologies developed in this work. The structures performed well under loading test conditions. It shows that function-specific multi-material structures ultrasonically consolidated and LENS fabricated can perform well in real-life applications.
|
128 |
Uncovering the Role of Propagule Pressure in Determining Establishment Success Using a Synthetic Biology ApproachDressler, Michael D. 03 December 2018 (has links)
The spread of invasive species poses a major ecological and economical threat. Consequently there are ongoing efforts to develop a generalizable mechanism to predict establishment success of non-native species. One proposed mechanism to predict establishment success is propagule pressure, which is defined as the number of individuals introduced at a given time. Although some studies have demonstrated a positive correlation between propagule pressure and establishment success, others have not, and the effect of propagule pressure on establishment success remains unclear. To address this challenge, a strain of bacteria engineered with an Allee effect, a growth dynamic that is often associated with establishing species, was used. The timing between successive introduction events that resulted in establishment success was measured. It was observed that if the time between two introduction events was sufficiently long, growth did not occur. By manipulating the growth rate of the bacteria, it was shown that that the minimal time between the two introduction events that resulted in growth was constrained as growth rate decreased. Moreover, it was concluded that asymmetry in the density of bacteria introduced in the introduction events increased the maximum time between introduction events that resulted in growth. These results help to remedy conflicting data in the literature by identifying conditions where propagule pressure has, and does not have, a positive impact on establishment success. These findings can have major implications in understanding and predicting the unique population dynamics of invasive species.
|
129 |
A Synthetic Lethal shRNA Screen and Genetic Proof of Concept Identifies RAC1 as a Novel Target to Disrupt Plexiform Neurofibroma FormationMund, Julie Ann 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Neurofibromatosis Type 1 (NF1) is a highly penetrant autosomal dominant
genetic disorder where mutations in the tumor suppressor gene NF1 leads to decreased
neurofibromin. The most debilitating manifestation is the presence of complex multilineage
Schwann cell-derived plexiform neurofibromas (PN). Historically, little clinical
success has been achieved targeting PN through surgery or chemotherapies. I performed
an shRNA library screen of patient-derived Schwann cell lines to identify novel
therapeutic targets to disrupt PN formation and progression. An shRNA library screen of
human kinases and Rho-GTPases was performed in NF1-/- and paired NF1 competent
immortalized Schwann cell lines. Following sequencing, candidates were identified. We
previously developed a novel mouse model of NF1 wherein a neural crest specific Postncre
targeted loxp-flanked Nf1 that replicated the PN found in patients. Additional cohorts
of mice were generated with biallelic deletion of Rac1 (Nf1f/fRac1f/f Postn-Cre+; DKO ).
Mice were aged for 9 months and peripheral nerves were harvested and fixed in formalin.
Peripheral nerve size was measured and tumors were identified through blinded analysis
of hematoxylin and eosin and Masson’s Trichrome (collagen) stained slides. Rho family
members, including RAC1, were identified as candidates through an shRNA library
screen. Genetic disruption of Rac1 in the Schwann cell lineage resulted in the prevention
of tumor formation in DKO mice, as observed by peripheral nerve size and histological
analysis. I observed an average of 14.8 +/- 2.65 tumors per mouse in the Nf1f/f Postnviii
Cre+ cohort compared to 0 tumors in the DKO (p<0.0001). Following an shRNA library
screen, RAC1 was identified as a candidate to modulate PN formation. Biallelic deletion
of Rac1 in vivo prevented PN formation. I demonstrate that a candidate identified in an
shRNA library screen can translate to an biological effect in a mouse model of PN.
|
130 |
Impact of Cell Composition and Geometry on Human Induced Pluripotent Stem Cells-Derived Engineered Cardiac Tissue / 細胞密度および組織形状がヒト人工多能性幹細胞由来の大型心臓組織に与える影響についての検討Nakane, Takeichiro 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20972号 / 医博第4318号 / 新制||医||1026(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 長船 健二, 教授 渡邊 直樹, 教授 江藤 浩之 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
Page generated in 0.0769 seconds