• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 7
  • 6
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Signal transduction mechanisms for lysophosphatidic acid mediated cardiac differentiation of P19 stem cells

Maan, Gagandeep January 2018 (has links)
The role of endogenous molecules in facilitating stem cell differentiation into cardiomyocytes is yet to be fully understood. SPC and S1P, common biolipids, promote cardiac differentiation of mesenchymal stem cells and cardiac progenitor cells, however, the same potential of closely related lysophosphatidic acid (LPA) has only recently become evident. The initial cardio-protection offered by elevated LPA levels in response to acute myocardial infarction and the ability of this biolipid to mediate other cellular fates served as a rationale to investigate the ability of LPA to mediate the cardiac differentiation of the murine P19 teratocarcinoma cell line and further examine the role of signalling molecules critical to lineage commitment. All experiments were carried out using P19 stem cells, cultured in supplemented alpha-minimal essential medium. Cells were aggregated into embryoid bodies in the presence of 5µM LPA in non-tissue grade Petri dishes over the course of 4 days to commence the differentiation process. Inhibitors were added 60 minutes before LPA while control cells were cultured in medium only. Embryoid bodies were transferred to 6-well tissue culture grade plates and cultured for a further 6 days. Cardiac differentiation was assessed by examining the expression of ventricular myosin light chain (MLC1v) by western blot and the role of LPA receptors 1-4, PKC, PI3K, MAPKs, and NF-κB were determined by examining the changes in this expression in the presence of selective inhibitors. The induction and regulation of GATA4, MEF2C, ATF-2, JNK, and YAP was also determined by western blotting. The activity and regulation of transcription factors, AP-1 and NF-κB, and the MAPKs was determined using ELISA kits. LPA induced the differentiation of P19 cells into cardiomyocytes most effectively when used at a concentration of 5µM as evidenced by the expression of MLC1v on day 10 of the differentiation process. Inhibition of LPA receptor 4 (0.1mg/mL Suramin), LPA receptors 1/3 (20µM Ki16425), LPA receptor 2 (7.5nM H2L5186303), PKC (10µM BIM-1), PI3K (20µM LY294002), ERK (20µM PD98059), JNK (10µM SP600125), and NF-κB (0.01nM CAY10470) blocked LPA induced expression of MLC1v. GATA4, MEF2C, pcJun, pJunD, and pATF2 expression increased in a time-dependent manner peaking at day 10 in LPA treated cells. GATA4 and pcJun expression was suppressed by all the inhibitors whereas MEF2C expression was unaffected by CAY10470, pJunD expression was unaffected by H2L5186303, pATF2 and NF-κB expression was unaffected by LY294002, but the latter was enhanced by Suramin. JNK was transiently phosphorylated in all cells whereas YAP was dephosphorylated 24-48 hours after EB formation in LPA treated cells and were both affected by Ki16425 and partially by H2L5186303 treatment. In conclusion, the studies carried out in this thesis have shown that LPA mediates the cardiac differentiation of P19 cells through LPA receptor 2, partially through receptors 1/3, and possibly through receptor 4. Conceivably downstream of these receptors, PKC, PI3K, MAPK, and NF-κB signalling pathways converge on the regulation of cardiac-specific transcription factors GATA4 and MEF2C along with ubiquitous transcription factor AP-1. JNK signalling is initiated through LPA receptors 1/3 and partially through receptor 2 to commence the cardiac program however the role of JNK and YAP in the proliferation of aggregating EBs is yet to be entirely established.
2

Impact of Cell Composition and Geometry on Human Induced Pluripotent Stem Cells-Derived Engineered Cardiac Tissue / 細胞密度および組織形状がヒト人工多能性幹細胞由来の大型心臓組織に与える影響についての検討

Nakane, Takeichiro 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20972号 / 医博第4318号 / 新制||医||1026(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 長船 健二, 教授 渡邊 直樹, 教授 江藤 浩之 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
3

Modulation of Stem Cell Fate by Electrical Stimulation

Kim, Sun Wook January 2013 (has links)
No description available.
4

Characterization and Application of Bioengineered Heart Muscle as a New Tool to Study Human Heart Development and Disease

Raad, Farah 13 June 2016 (has links)
No description available.
5

Etude in vitro et in vivo d'une cardiomyopathie secondaire à une laminopathie / In vitro and in vivo study of a cardiomyopathy secondary to a laminopathy

Jebeniani, Imen 27 January 2017 (has links)
La mutation LMNA H222P est responsable de dystrophie musculaire d’Emery Dreifuss autosomale dominante (DMED-AD). Les patients atteints de DMED-AD souffrent d’une dystrophie musculaire et de cardiomyopathie dilatée. Les mécanismes moléculaires impliqués dans cette pathologie sont encore peu connus. Dans mes travaux de thèse, je me suis servie de cellules souches pluripotentes murines ainsi que de souris portant la mutation LMNA H222P afin d’étudier une approche thérapeutique potentielle. L'échocardiographie des souris LMNA H222P in utero révèle une dilatation des cœurs embryonnaires dès E13.5, ce qui indique une origine développementale de la maladie. La différenciation cardiaque des cellules souches pluripotentes murines est altérée dès le stade mésoderme. Aussi, les niveaux d’expression de Mesp1, snail1 et twist, gènes impliqués dans la transition épithélio-mésenchymateuse (TEM) sont diminués dans les cellules mutées en comparaison avec les cellules sauvages en cours de différenciation. L'immunoprécipitation de la chromatine dans les cellules différenciées révèle une diminution spécifique de la marque d'histone H3K4me1 sur des régions régulatrices de Mesp1 et Twist. L'inhibition de LSD1, une déméthylase spécifique de H3K4me1 rétablit le taux de la marque H3K4me1 sur les régions génomiques étudiées dans les cellules mutées. De plus, la baisse de LSD1 améliore la contraction des cardiomyocytes différenciés obtenus à partir des cellules souches embryonnaires portant la mutation LMNA H222P. L'inhibiteur de LSD1, utilisé dans les essais cliniques en cancérologie, pourrait être une molécule thérapeutique potentielle pour le traitement des laminopathies à phénotype cardiaque. / The LMNA H222P missense mutation in autosomal dominant Emery-Dreifuss muscular dystrophy patients is responsible for a muscular dystrophy and dilated cardiomyopathy. The molecular mechanisms underlying the origin and development of the pathology are still unknown. Herein, we used mouse pluripotent stem cells as well as a mutant mouse, all harboring the LMNA H222P mutation, to investigate potential therapeutic approaches. Echocardiography of LMNA H222P mice in utero revealed dilatation of heart as early as E13.5, pointing to a developmental origin of the disease. Cardiac differentiation of mouse pluripotent stem cells was impaired as early as the mesodermal stage. Expression of Mesp1, a mesodermal cardiogenic gene as well as snail1 and twist, involved in epithelial-mesenchymal transition (EMT) of epiblast cells, was decreased in mutated cells when compared to wild type in the course of differentiation. In turn, cardiomyocyte differentiation was impaired. Chromatin immunoprecipitation assays of the H3K4me1 epigenetic mark in differentiating cells revealed a specific decrease of this histone mark on regulatory regions of MesP1 and Twist. Downregulation or inhibition of LSD1, that specifically demethylates H3K4me1, rescued the epigenetic landscape in mutated cells. In turn downregulation of LSD1 rescued contraction in cardiomyocytes differentiated from LMNA H222P pluripotent stem cells. Our data point to LSD1 inhibitor, used in clinical trials in cancerology, as potential therapeutic molecule for laminopathies with a cardiac phenotype.
6

Engineering electrospun scaffolds to treat myocardial infarction

Guo, Xiaolei 16 August 2012 (has links)
No description available.
7

Insights Into Molecular Regulation Of Cardiomyocyte Differentiation Of Mouse Pluripotent Stem Cells

Abbey, Deepti 07 1900 (has links) (PDF)
Pluripotent stem cells (PSCs) are specialized cells, which have remarkable ability to maintain in an undifferentiated state and are capable of undergoing differentiation to three germ-layer lineage cell types, under differentiation-enabling conditions. PSCs include embryonic stem (ES)-cells, embryonal carcinoma (EC)-cells and embryonic germ (EG)-cells. ES-cells are derived from the inner cell mass (ICM) of day 3.5 blastocysts (mouse). On the other hand, EC- and EG-cells have different source of origin and exhibit some differences in terms of their differentiation abilities and culture requirements. These PSCs act as an ideal in-vitro model system to study early mammalian development and cell differentiation and, they could potentially be used for experimental cell-based therapy for a number of diseases. However, one of the problems encountered is the immune rejection of transplanted cells. For this, immune-matched induced pluripotent stem (iPS)-cells have been derived from somatic cells, by forced expression of a few stemness genes. Although, human PSCs lines are being experimented, their cell-therapeutic potential is still far from being thoroughly tested due to lack of our understanding regarding lineage-specific differentiation, homing and structural-functional integration of differentiated cell types in the host environment. To understand these mechanisms, it is desirable to have fluorescently-marked PSCs and their differentiated cell-types, which could facilitate experimental cell transplantation studies. In this regard, our laboratory has earlier generated enhanced green fluorescent protein (EGFP)-expressing FVB/N transgenic ‘green’ mouse: GU-3 line (Devgan et al., 2003). This transgenic mouse has been an excellent source of intrinsically green fluorescent cell types. Recently, we have derived a ‘GS-2’ ES-cell line from the GU-3 mouse line (Singh et al., 2012). Additionally, we envisaged the need for developing an iPS-cell line from the GU-3 mouse and then use them for studying cell differentiation. Thus, aims of the study described in the thesis are to: (1) develop an experimental system to derive EGFP-expressing fluorescently-marked iPS-cell line from a genetically non-permissive FVB/N mouse strain, characterize the established iPS-cell line and achieve differentiation of various cell types from EGFP-expressing iPS-cell line; (2) to study differentiation phenomenon, in particular to cardiac lineage, using select-cardiogenesis modulators and (3) to assess the gene-expression profiles and signaling system associated with cardiomyocyte differentiation of PSCs. This thesis is divided into four chapters with the 1st chapter being a review of literature followed by three data chapters. In the chapter I of the thesis, a comprehensive up-to¬date review of literature is provided pertaining to PSCs, their classification, derivation strategies especially for reprogramming of somatic cells for iPSC generation, their differentiation potential and characterization, particularly to cardiac lineage. Various molecular regulators involved in cardiac differentiation of PSCs with emphasis on epigenetic regulation involving DNA methylation and signaling pathways involved are described in detail. Subsequently, various approaches used for enhanced cardiac differentiation of PSCs and the therapeutic potential of PSC-derived differentiated cell types to treat disease(s) are discussed. Chapter-II describes the successful establishment of a permanent iPS-cell line (named ‘N9’ iPS-cell line) from the non-permissive FVB/N EGFP-transgenic GU-3 ‘green’ mouse. This chapter provides results pertaining to detailed derivation strategy and characterization of the ‘N9’ iPS-cell line which includes colony morphology, expansion (proliferation) efficiency, alkaline phosphatase staining, pluripotent markers’ expression analysis by qPCR and immunostaining approaches and karyotyping analysis. Further, in order to thoroughly assess the differentiation competence of the ‘N9’ iPS¬cell line, assessment of in-vitro and in-vivo differentiation potential of the ‘N9’ iPS-cell line by embryoid body (EB) formation and teratoma formation in nude mice and its detailed histological analysis showing three germ layer cell types and their derivatives were performed, followed by the generation of chimeric blastocysts by aggregation method. This established N9 iPS-cell line could potentially offer a suitable model system to study cardiac differentiation along with other established PSC lines such as the GS-2 and D3 ES-cell lines and the P19 EC-cell line. Following the establishment of the system to study cardiac differentiation of PSC lines, efforts were made to understand the biology of cardiac differentiation of PSCs (wild¬type and EGFP-transgenic PSC lines and P19 EC-cell line) using small molecules as modulators. Data pertaining to this is described in Chapter-III. The possible involvement of epigenetic regulation of cardiogenesis for example, DNA methylation changes in cardiogenesis-associated genes is studied using 5-aza cytidine as one of the chromatin modifiers. In order to understand the cardiac differentiation phenomenon, as a consequence of using 5-aza cytidine in cell culture, it was important to investigate its ability to induce/mediate cardiac differentiation. This involved an assessment by quantitating the cardiac beating phenotype and correlating this with enhanced cardiac-gene expression profiles. Further, DNA methylation regulation of cardiogenesis¬associated genes is described using various DNA methylation analysis techniques. Moreover, the possible involvement of other signaling members in mediating the cardiac differentiation is also studied using the P19 EC-cells. Results pertaining to the above findings are described in detail in the Chapter-III. Chapter-IV is focused on various efforts made towards investigating the ability of ascorbic acid to enhance cardiac differentiation of mouse ES-cells (GS-2 and D3 lines). Ascorbic acid has been implicated to be influencing cardiogenesis and it is reported to enhance differentiation of various cell types under certain culture conditions. Results pertaining to enhancement of cardiac differentiation of PSCs using ascorbic acid are presented in this chapter. This included assessment by quantitating cardiac beating phenotype and its correlation with enhanced cardiogenesis-associated gene expression profiles. Besides, estimation on the sorted cardiomyocyte population, derived from PSCs was also made using mature-cardiac marker. The possible underlying signaling mechanism involved was also studied in detail, using specific inhibitors for pERK (U0126), integrin signaling (pFAK; PP2) and collagen synthesis (DHP), in order to ascertain their involvement in ascorbic acid-mediated cardiac differentiation of mouse ES-cells. Subsequent to the three data chapters (II-IV), separate sections are provided for ‘Summary and Conclusion’ and for ‘Bibliography’, cited in the thesis. The overall scope of the study has been to understand the basic biology of cardiac differentiation from PSCs (EC-cells, iPS-cells and transgenic and wild-type ES-cells) and to assess, by using certain small molecules, whether PSCs could be coaxed to enhance the differentiation to a particular cell type (cardiac). The data contained in this thesis addresses the above theme.
8

Identification of new genes that control neurogenesis in the cerebral cortex

Van Den Ameele, Jelle 20 May 2014 (has links)
The cerebral cortex is one of the most complex and divergent of all biological structures and is composed of hundreds of different types of highly interconnected neurons. This complexity underlies its ability to perform exceedingly complex neural processes. One of the most important questions in developmental neurobiology is how such a vast degree of diversity and specificity is achieved during embryogenesis. Furthermore, understanding the cellular and genetic basis of cortical development may yield insights into the mechanisms underlying human disorders such as mental retardation, autism, epilepsies and brain tumors. <p>During this Phd-project, we set out to identify novel transcription factors involved in cortical neurogenesis. Therefore, we initially took advantage of a model of in vitro embryonic stem cell (ESC)-derived corticogenesis that was previously established in the lab (Gaspard et al. 2008) and from several previously generated ESC lines that allow overexpression of specific transcription factors potentially involved in corticogenesis (van den Ameele et al. 2012). <p>Among the genes tested, Bcl6, a B-cell lymphoma oncogene known to be expressed during cortical development but without well-characterized function in this context, displayed a strong proneurogenic activity and thus became the main focus of this thesis. <p><p>During neurogenesis, neural stem/progenitor cells (NPCs) undergo an irreversible fate transition to become neurons. The Notch pathway is well known to be important for this process, and repression of Notch-dependent Hes genes is essential for triggering differentiation. However, Notch signalling often remains active throughout neuronal differentiation, implying a change in the transcriptional responsiveness to Notch during the neurogenic transition.<p>We showed that Bcl6 starts to be expressed specifically during the transition from progenitors to postmitotic neurons and is required for proper neurogenesis of the mouse cerebral cortex. Bcl6 promotes this neurogenic conversion by switching the composition of Notch-dependent transcriptional complexes at the Hes5 promoter. Bcl6 triggers exclusion of the co-activator Mastermind-like 1 and recruitment of the NAD+-dependent deacetylase Sirt1, which we showed to be required for Bcl6-dependent neurogenesis in vitro. The resulting epigenetic silencing of Hes5 leads to neuronal differentiation despite active Notch signalling. These findings thus suggest a role for Bcl6 as a novel proneurogenic factor and uncover Notch-Bcl6-Sirt1 interactions that may affect other aspects of physiology and disease (Tiberi et al. 2012a). <p><p>A subsequent yet unpublished part of this Phd-project focused on unraveling roles for Bcl6 in regionalization of the cerebral cortex. In all mammals, the three major areas of the neocortex are the motor, somatosensory and visual areas, each subdivided in secondary domains and complemented with species-specific additional areas. All these domains comprise of neurons with different functionality, molecular profiles, electrical activity and connectivity. Spatial patterning of the cortex is mainly under the control of diffusible molecules produced by organizing centers, but is also regulated by intrinsic, cell-autonomous programs (Tiberi et al. 2012b). <p>Since Bcl6 expression is confined to frontal and parietal regions of the developing cerebral cortex and remains high in postmitotic neurons, also after completion of neurogenesis, we hypothesized it would be involved in acquisition of motor and somatosensory identity. As expected from the neurogenesis defect in these regions, we observed a trend towards a reduced size of the frontal areas in the Bcl6 mutant cortex. Preliminary data from cDNA microarray profiling after gain- and loss-of-function of Bcl6 and from in situ hybridization on mouse cortex however do not show dramatic changes in molecular markers of different cortical areas. Similarly, the coarse-grained pattern of thalamocortical and efferent projections of motor and somatosensory neurons appears to be spared. These preliminary findings thus suggest that Bcl6 is not strictly required for proper acquisition of motor and somatosensory areal identity. / Doctorat en Sciences médicales / info:eu-repo/semantics/nonPublished
9

Étude des conséquences fonctionnelles de la mutation SGO1 K23E sur la voie de signalisation TGF-β

Gosset, Natacha 06 1900 (has links)
No description available.

Page generated in 0.1574 seconds