Spelling suggestions: "subject:"engineering fhysics"" "subject:"engineering ephysics""
441 |
The search for diffuse interstellar bands in quasar absorption line systemsYork, Brian A. 15 August 2008 (has links)
The diffuse interstellar bands (DIBs) probably arise from complex organic molecules whose strength in local galaxies correlates with neutral hydrogen column density, N(H I), and dust reddening, E(B−V). Because Damped Lyman-α systems are known to have high N(H I), and Ca II absorbers in quasar (QSO) spectra are posited to have high N(H I) and reddening, both represent promising sites for the detection of DIBs at cosmological distances. I present the results of a search for diffuse bands in seven DLAs and nine Ca II absorbers. I announce the detection of the first narrow DIBs at z>0 towards one DLA and one Ca II system. I further investigate the relative strengths of the DIBs as well as their correlations with N(H I) and E(B−V). Finally, I discuss the prospects for using DIBs to better understand the properties of quasar absorption systems, and for using DIB searches in absorption systems to better understand the properties of DIBs.
|
442 |
On The Ramberg-Osgood Stress-Strain Model And Large Deformations of Cantilever BeamsGiardina, Ronald J, Jr 09 August 2017 (has links)
In this thesis the Ramberg-Osgood nonlinear model for describing the behavior of many different materials is investigated. A brief overview of the model as it is currently used in the literature is undertaken and several misunderstandings and possible pitfalls in its application is pointed out, especially as it pertains to more recent approaches to finding solutions involving the model. There is an investigation of the displacement of a cantilever beam under a combined loading consisting of a distributed load across the entire length of the beam and a point load at its end and new solutions to this problem are provided with a mixture of numerical techniques, which suggest strong mathematical consistency within the model for all theoretical assumptions made. A physical experiment was undertaken and the results prove to be inaccurate when using parameters derived from tensile tests, but when back calculating parameters from the beam test the model has a 14.40% error at its extreme against the experimental data suggesting the necessity for further testing.
|
443 |
Design and Characterization of 15nm FinFET Standard Cell LibrarySadhu, Phanindra Datta 01 June 2021 (has links)
The processors and digital circuits designed today contain billions of transistors on a small piece of silicon. As devices are becoming smaller, slimmer, faster, and more efficient, the transistors also have to keep up with the demands and needs of the daily user. Unfortunately, the CMOS technology has reached its limit and cannot be used to scale down due to the breakdown of the transistor caused by short channel effects. Alternative solution to this is the FinFET transistor technology where the gate of the transistor is a 3D fin which surrounds the transistor and prevents the breakdown caused by scaling and short channel effects. FinFET devices are reported to have excellent control over short channel effects, high On/Off Ratio, extremely low gate leakage current and relative immunization over gate edge line roughness. Sub 20 nm is perceived to the limit of scaling the CMOS transistors but FinFETs can be scaled down further due the above-mentioned reasons. Due to these advantages the VLSI industry have now shifted to FinFET in their designs. Although these transistors have not been completely opened to academia. Analyzing and observing the effects of these devices can be pivotal in gaining an in depth understanding of them.
This thesis explores the application of FinFETs using a standard cell library developed using these transistors and are analyzed and compared with CMOS transistors. The FinFET package files used to develop these cell is a 15nm FinFET technology file developed by NCSU in collaboration with Cadence and Mentor Graphics. Post design the cells were characterized and then the results were compared to through various CMOS packages to understand and extrapolate conclusions on the FinFET devices.
|
444 |
Out-of-plane Ferromagnetic Resonance (FMR) measurements on magnetic nanoparticle dispersions for biomedical sensor applicationsBack, Markus January 2020 (has links)
In this master work, we investigated the feasibility of a magnetic resonance measurement technique using magnetic nanoparticle dispersions in both liquid and solid form. The implementation is realised as a coplanar waveguide operating in the frequency range of 0.5 - 20 GHz and an electromagnet producing a static magnetic field of strength up to 1.2 T. The Gilbert magnetic damping factor is determined for polymer composites of magnetic nanoparticles and the gyromagnetic ratio is determined for both nanoparticle dispersions in liquid form and polymer composites.
|
445 |
Design and Characterization of Standard Cell Library Using FinFETsSadhu, Phanindra Datta 01 June 2021 (has links) (PDF)
The processors and digital circuits designed today contain billions of transistors on a small piece of silicon. As devices are becoming smaller, slimmer, faster, and more efficient, the transistors also have to keep up with the demands and needs of the daily user. Unfortunately, the CMOS technology has reached its limit and cannot be used to scale down due to the transistor's breakdown caused by short channel effects. An alternative solution to this is the FinFET transistor technology, where the gate of the transistor is a three dimensional fin that surrounds the transistor and prevents the breakdown caused by scaling and short channel effects. FinFET devices are reported to have excellent control over short channel effects, high On/Off Ratio, extremely low gate leakage current and relative immunization over gate edge line roughness. Sub 20 nm node size is perceived to be the limit of scaling the CMOS transistors, but FinFETs can be scaled down further because of its unique design. Due to these advantages, the VLSI industry has now shifted to FinFET in implementation of their designs. However, these transistors have not been completely opened to academia. Analyzing and observing the effects of these devices can be pivotal in gaining an in-depth understanding of them.
This thesis explores the implementation of FinFETs using a standard cell library designed using these transistors. The FinFET package file used to design these cells is a 15nm FinFET technology file developed by NCSU in collaboration with Cadence and Mentor Graphics. Post design, the cells were characterized, the results were analyzed and compared with cells designed using CMOS transistors at different node sizes to understand and extrapolate conclusions on FinFET devices.
|
446 |
Installation of a New Electron Cyclotron Plasma Enhanced Chemical Vapour Deposition (ECR-PECVD) Reactor and a Preliminary Study ofThin Film DepositionsDabkowski, Ryszard P. January 2012 (has links)
<p>A new electron cyclotron plasma enhanced chemical vapour deposition (ECR-PECVD) reactor has been installed and tested at McMaster University. The focus of this project was the installation of the reactor and the growth of silicon oxide, silicon oxynitride, cerium doped silicon oxynitride and aluminium doped silicon oxide films to test the capabilities of the reactor. Silicon oxide films were prepared with near-stoichiometric compositions and silicon rich compositions. Good repeatability of the growths was seen. An increase in deposition temperature showed stable refractive index and a decrease in the growth rates. Silicon oxynitride films of varying compositions were prepared, and showed a non-uniformity of ~1% and growth rates of ~3.5 nm/min. Films prepared with a low oxygen flow were seen to be nitrogen rich. Although the depositions using Ce(TMHD)4 showed significant cerium incorporation, there was also high carbon contamination. One likely cause of this is the high sublimator temperature used during depositions or a thermal shock to the precursor during initial system calibration. A definitive cause of the carbon contamination has not been established. The cerium films showed strong blue luminescence after post-deposition annealing in N2 above 900° C. A drop in the luminescence was observed at 1100° C and a return of the luminescence at 1200° C. Generally, high cerium incorporation was associated with higher total luminescence. Al(THMD)3 was evaluated as an aluminium precursor for Al-doped silicon oxide films. The films showed aluminium content up to 6% demonstrating the viability of using Al(THMD)3 as a Al doping precursor.</p> / Master of Applied Science (MASc)
|
447 |
MODELING, DESIGN, AND ADJOINT SENSITIVITY ANALYSIS OF NANO-PLASMONIC STRUCTURESAhmed, Osman S. 04 1900 (has links)
<p>The thesis intends to explain in full detail the developed techniques and approaches for the modeling, design, and sensitivity analysis of nano-plasmoic structures. However, some examples are included for audiences of general microwave background. Although the thesis is mainly focused on simulation-based techniques, analytical and convex optimization approaches are also demonstrated. The thesis is organized into two parts. Part 1 includes Chapters 2-4, which cover the simulation-based modeling and sensitivity analysis approaches and their applications. Part 2 includes Chapters 5 and 6, which cover the analytical optimization approaches.</p> / <p>We propose novel techniques for modeling, adjoint sensitivity analysis, and optimization of photonic and nano-plasmonic devices. The scope of our work is generalized to cover microwave, terahertz and optical regimes. It contains original approaches developed for different categories of materials including dispersive and plasmonic materials. Artificial materials (metamaterials) are also investigated and modeled. The modeling technique exploits the time-domain transmission line modeling (TD-TLM) technique. Generalized adjoint variable method (AVM) techniques are developed for sensitivity analysis of the modeled devices. Although TLM-based, they can be generalized to other time-domain modeling techniques like finite difference time-domain method (FDTD) and time-domain finite element method (FEM).</p> <p>We propose to extend the application of TLM-based AVM to photonic devices. We develop memory efficient approaches that overcome the limitation of excessive memory requirement in TLM-based AVM. A memory reduction of 90% can be achieved without loss of accuracy and at a more efficient calculation procedure. The developed technique is applied to slot waveguide Bragg gratings and a challenging dielectric resonator antenna problem.</p> <p>We also introduce a novel sensitivity analysis approach for materials with dispersive constitutive parameters. To our knowledge, this is the first wide-band AVM approach that takes into consideration the dependence of material properties on the frequency. The approach can be utilized for design optimization of innovative nano-plasmonic structures. The design of engineered metamaterial is systematic and efficient. Beside working with engineered new designs, dispersive AVM can be utilized in bio-imaging applications. The sensitivity of the objective function with respect to dispersive material properties enables the exploitation of parameter and gradient based optimization for imaging in the terahertz and optical regimes. Material resonance interaction can be easily investigated by the provided sensitivity information.</p> <p>In addition to the developed techniques for simulation-based optimization, several analytical optimization algorithms are proposed to foster the parameter extraction and design optimization in terahertz and optical regimes. In terahertz time-domain spectroscopy, we have developed an efficient parameter based approach that utilizes the pre-known information about the material. The algorithm allows for the estimation of the optical properties of sample materials of unknown thicknesses. The approach has been developed based on physical analytical dispersive models. It has been applied with the Debye, Lorentz, Cole-Cole, and Drude model.</p> <p>Furthermore, we propose various algorithms for design optimization of coupled resonators. The proposed algorithms are utilized to transform a highly non-linear optimization problem into a linear one. They exploit an approximate transfer function of the coupled resonators that avoids negligible multiple reflections among them. The algorithms are successful for the optimization of very large-scale coupled microcavities (150 coupled ring resonators).</p> / Doctor of Philosophy (PhD)
|
448 |
ELECTRICAL CHARACTERIZATION AND OPTIMIZATION OF GALLIUM ARSENIDE NANOWIRE ENSEMBLE DEVICESChia, Andrew 10 1900 (has links)
<p>III-V nanowire (NW) ensemble devices were fabricated using novel approaches to address key NW optoelectronic issues concerning electrical contacts, doping, surface effects and underlying electrostatics physics.</p> <p>NWs were first embedded in a filling medium, thus achieving low sheet resistance front contacts while preventing shunts. Various filling materials were assessed for porosity, surface roughness and thermal stability, giving Cyclotene as an ideal filing material. Sonication was also introduced as a novel method to achieve perfect planarization.</p> <p>The presence of the Cyclotene also enabled the NWs to be characterized precisely and easily by secondary ion mass spectrometry (SIMS) to give the NW dopant concentration with excellent spatial resolution. Additionally, SIMS characterization demonstrated the ability to characterize the height uniformity of individual segments in a heterostructure NW ensemble.</p> <p>The focus of the work shifted towards surface effects on NW device performance. Therefore, Poisson's equation was solved to provide a comprehensive model of NW surface depletion as a function of interface state density, NW radius and doping density. Underlying physics was examined where surface depletion was found to significantly reduce the conductivity of thin NWs, leading to carrier inversion for some.</p> <p>This model was then applied in conjunction with a transport model to fit current-voltage curves of an AlInP-passivated GaAs NW ensemble device. A 55% decrease in surface state density was achieved upon passivation, corresponding to an impressive four order of magnitude increase in the effective carrier concentration. Additionally, conventional and time-resolved photoluminescence measurements showed intensity and carrier lifetime improvement greater than 20x upon passivation.</p> <p>Finally, the model was extended to describe radial pn junction NWs with surface depletion to give radial energy band profiles for any arbitrary set of NW parameters. Specific cases were analyzed to extract pertinent underlying physics, while the built-in potential was optimized for the design for an optimal device.</p> / Doctor of Philosophy (PhD)
|
449 |
Optical spectroscopic microscopies study of nano-to-submicron scale structural alterations in human brain cells/tissues and skin fibroblasts due to brain diseases using mesoscopic physicsAlharthi, Fatemah 08 December 2023 (has links) (PDF)
Optical scattering techniques are suitable probes for studying weak disordered refractive index media such as biological cells and tissues. Several brain diseases accompany the nano-to-submicron scales’ structural alterations of the basic building blocks of cells/tissues in the brain and skin fibroblasts. For example, several molecular modifications such as DNA methylation, and histone degradation occur in cells earlier than morphological changes detectable at a microscopic level. These alterations also change the refractive index structures of the cells/tissues at the nano-to-submicron scales. Unfortunately, traditional methods do not allow the detection of these alterations in the early stages of diseases. Recent developments in mesoscopic optical physics-based techniques can probe these alterations. Particularly, mesoscopic light transport and localization approaches enable the measurements and quantifications of the degree of structural alterations in the cells/tissues and unprecedented information on progressive brain diseases.
This dissertation provides a detailed study of the structural changes at nano-to-submicron levels in human brain cells/tissues and human skin fibroblasts in two major neurodegenerative diseases, Alzheimer’s disease (AD) and Parkinson's disease (PD), using dual spectroscopic imaging techniques, namely partial wave spectroscopy (PWS) for light transport and inverse participation ratio (IPR) for weak light localization. In particular, a nanoscale-sensitive advanced PWS technique is used to quantify the structural alterations in cells/tissues. Further, the IPR technique is used to quantify molecular-specific mass density alterations within cells using their light localization properties via confocal imaging. These dual optical scattering techniques were utilized to measure the degree of structural disorders, termed ‘disorder strength’, by distinguishing the diseased cells/tissues from normal ones in the human brain and human skin fibroblasts due to neurodegenerative diseases. Our results show that the degree of structural disorder (����) increases in the affected cells and tissues relative to the normal, both at the cellular/tissue level and in the DNA molecular mass density structural levels. The results of the studies strongly reveal that the degree of structural disorder strength (����) is an effective biomarker/numerical indicator for brain disease diagnostics.
|
450 |
Macroscopic description of rarefied gas flows in the transition regimeTaheri Bonab, Peyman 01 September 2010 (has links)
The fast-paced growth in microelectromechanical systems (MEMS), microfluidic fabrication, porous media applications, biomedical assemblies, space propulsion, and vacuum technology demands accurate and practical transport equations for rarefied gas flows. It is well-known that in rarefied situations, due to strong deviations from the continuum regime, traditional fluid models such as Navier-Stokes-Fourier (NSF) fail. The shortcoming of continuum models is rooted in nonequilibrium behavior of gas particles in miniaturized and/or low-pressure devices, where the Knudsen number (Kn) is sufficiently large.
Since kinetic solutions are computationally very expensive, there has been a great desire to develop macroscopic transport equations for dilute gas flows, and as a result, several sets of extended equations are proposed for gas flow in nonequilibrium states. However, applications of many of these extended equations are limited due to their instabilities and/or the absence of suitable boundary conditions.
In this work, we concentrate on regularized 13-moment (R13) equations, which are a set of macroscopic transport equations for flows in the transition regime, i.e., Kn≤1. The R13 system provides a stable set of equations in Super-Burnett order, with a great potential to be a powerful CFD tool for rarefied flow simulations at moderate Knudsen numbers.
The goal of this research is to implement the R13 equations for problems of practical interest in arbitrary geometries. This is done by transformation of the R13 equations and boundary conditions into general curvilinear coordinate systems. Next steps include adaptation of the transformed equations in order to solve some of the popular test cases, i.e., shear-driven, force-driven, and temperature-driven flows in both planar and curved flow passages. It is shown that inexpensive analytical solutions of the R13 equations for the considered problems are comparable to expensive numerical solutions of the Boltzmann equation. The new results present a wide range of linear and nonlinear rarefaction effects which alter the classical flow patterns both in the bulk and near boundary regions. Among these, multiple Knudsen boundary layers (mechanocaloric heat flows) and their influence on mass and energy transfer must be highlighted. Furthermore, the phenomenon of temperature dip and Knudsen paradox in Poiseuille flow; Onsager's reciprocity relation, two-way flow pattern, and thermomolecular pressure difference in simultaneous Poiseuille and transpiration flows are described theoretically. Through comparisons it is shown that for Knudsen numbers up to 0.5 the compact R13 solutions exhibit a good agreement with expensive solutions of the Boltzmann equation.
|
Page generated in 0.1081 seconds