• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 296
  • 10
  • Tagged with
  • 457
  • 457
  • 176
  • 176
  • 88
  • 73
  • 73
  • 73
  • 53
  • 27
  • 27
  • 27
  • 26
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Matter and damping effects in neutrino mixing and oscillations

Blennow, Mattias January 2005 (has links)
This thesis is devoted to the study of neutrino physics in general and the study of neutrino mixing and oscillations in particular. In the standard model of particle physics, neutrinos are massless, and as a result, they do not mix or oscillate. However, many experimental results now seem to give evidence for neutrino oscillations, and thus, the standard model has to be extended in order to incorporate neutrino masses and mixing among different neutrino flavors. When neutrinos propagate through matter, the neutrino mixing, and thus, also the neutrino oscillations, may be significantly altered. While the matter effects may be easily studied in a framework with only two neutrino flavors and constant matter density, we know that there exists (at least) three neutrino flavors and that the matter density of the Universe is far from constant. This thesis includes studies of three-flavor effects and a solution to the two-flavor neutrino oscillation problem in matter with an arbitrary density profile. Furthermore, there have historically been attempts to describe the neutrino flavor transitions by other effects than neutrino oscillations. Even if these effects now seem to be disfavored as the leading mechanism, they may still give small corrections to the neutrino oscillation formulas. These effects may lead to erroneous determination of the fundamental neutrino oscillation parameters and are also studied in this thesis in form of damping factors. / QC 20101124
422

A Non-Linear Eigensolver-Based Alternative to Traditional Self-Consistent Electronic Structure Calculation Methods

Gavin, Brendan E 01 January 2013 (has links) (PDF)
This thesis presents a means of enhancing the iterative calculation techniques used in electronic structure calculations, particularly Kohn-Sham DFT. Based on the subspace iteration method of the FEAST eigenvalue solving algorithm, this nonlinear FEAST algorithm (NLFEAST) improves the convergence rate of traditional iterative methods and dramatically improves their robustness. A description of the algorithm is given, along with the results of numerical experiments that demonstrate its effectiveness and offer insight into the factors that determine how well it performs.
423

Design and Fabrication of a Trapped Ion Quantum Computing Testbed

Caron, Christopher A 09 August 2023 (has links) (PDF)
Here we present the design, assembly and successful ion trapping of a room-temperature ion trap system with a custom designed and fabricated surface electrode ion trap, which allows for rapid prototyping of novel trap designs such that new chips can be installed and reach UHV in under 2 days. The system has demonstrated success at trapping and maintaining both single ions and cold crystals of ions. We achieve this by fabricating our own custom surface Paul traps in the UMass Amherst cleanroom facilities, which are then argon ion milled, diced, mounted and wire bonded to an interposer which is placed in an ultra-high vacuum chamber and baked in a conventional oven for 46 hours. We demonstrate the system’s ability to confine strontium ions and present preliminary data towards calibrating the ion trap parameters for reduced heating rates. Future work will see the system being used to study the effects of various trap geometries, process fabrication steps and surface treatments on anomalous heating rates, and for portable quantum sensing applications, as an optical atomic clock.
424

Simulation-based discrimination of Crab pulsar models with XL-Calibur / Simuleringsbaserad diskriminering av Krabbpulsarmodeller med XL-Calibur

Åkerström, Dennis January 2024 (has links)
Polarisation of X-ray light is being investigated with polarimeters to extend the borders of what can be observed. Distant compact objects, such as pulsars, that are to small on the sky to be analysed with imaging can be investigated by analysing the polarisation of the emitted light. This can reveal physics previously hidden by their small nature. There are many models that aim to describe the polarisation of these compact objects to make sense of what is measured. Two examples are the outer gap and two-pole caustic models. The X-ray polarimeter XL-Calibur is a balloon-borne telescope capable of detecting X-rays in the $15-80$ keV energy range. In this thesis details on the polarisation of light, how it can be measured and some principles of X-ray polarimetery is discussed. A new feature in the simulation of XL-Calibur in Geant4 is also described and used to investigate the possibility for XL-Calibur to distinguish between different Crab pulsar polarisation models at different signal rates. The results show that signal rates under 2 Hz yield insufficient data to distinguish between the two models using the measured polarisation fraction and angle. For greater signal rates XL-Calibur does in fact differentiate between the models correctly. New methods for the statistical analysis of data can be explored to allow more data to be salvaged, even for low signal rates. The derivation of polarisation parameters is fixed through Stokes parameters in this thesis. / Polarisationen av röntgenljus undersöks med polarimetrar för att utvidga gränserna för vad som kan observeras. Avlägsna kompakta objekt, såsom pulsarer, som är för små och för långt borta på himlen för att analyseras med optiska metoder, kan undersökas genom att analysera polarisationen av det utstrålade ljuset. Detta kan avslöja fysik som tidigare var dold på grund av deras storlek. Det finns många modeller som syftar till att beskriva polarisationen av dessa kompakta objekt för att förstå vad som mäts. Två exempel är modellerna: outer gap och two-pole caustic. Röntgenpolarimetern XL-Calibur är ett ballongburet teleskop som kan detektera röntgenstrålning i energiområdet $15-80$ keV. I denna avhandling diskuteras detaljer om ljusets polarisation, hur det kan mätas och några principer för röntgenpolarimetri. En ny funktion i simuleringen av XL-Calibur i Geant4 beskrivs också. Den används för att undersöka möjligheten för XL-Calibur att särskilja mellan olika polariseringsmodeller för Krabbpulsaren vid olika signaltakter. Resultaten visar att för signaltakter under 2 Hz, blir datan otillräcklig för att särskilja mellan de två modellerna både för polarisationsgraden och vinkeln. För högre signaltakter kan XL-Calibur skilja mellan modellerna. Nya metoder för statistisk analys av data kan utforskas för att möjliggöra att mer data kan användas, även för låga signaltakter. I denna avhandling beräknas polarisationsparametrarna genom Stokesparametrarna.
425

DOUBLE TUNING OF A DUAL EXTERNAL CAVITY SEMICONDUCTOR LASER FOR BROAD WAVELENGTH TUNING WITH HIGH SIDE MODE SUPPRESSION

Abu-El-Magd, Ali January 2011 (has links)
<p>Over the past few years various successful miniaturization attempts of External Cavity Semiconductor Lasers (ECSL) were published. They built upon the rich literature of ECSL configurations that were extensively analyzed and improved upon since the 1960s. This was merged with the microfabrication techniques of 3D structures based on MEMS technology. The main drive for miniaturizing such tunable lasers in the recent past was the huge potential for such devices in all optical networks specifically as signal sources that enable Wavelength Division Multiplexing (WDM).<br />This thesis compares the different configurations chosen to build tunable lasers using MOEMS technology. Our criteria of comparison include wavelength tuning range, side mode suppression, tuning speed and device dimensions. Designs based on the simple ECSL with a movable external mirror suffered from the tradeoff between tuning range and Side Mode Suppression SMS. To overcome this limitation most designs adopted grating based tuning using the Littrow or Littman/Metcalf configurations. These configurations allow for much better tuning results but don’t lend themselves easily to miniaturization. The grating based devices were bulky and quite complicated to realize.<br />We propose the adoption of the Zhu/Cassidy double external cavity configuration. It retains the simplicity of the single external mirror configuration along with the tuning range and the SMS of including multiple tuning elements. In its original form this configuration suffered from mode hopping within the tuning range. Thorough simulation, design and experimental evidence is presented in this work to show that by extending the configuration to allow full control over both optical tuning elements this drawback can be eliminated.<br />Our proposed design would reduce the form factor to < 300μm x 200μm x 200μm. The voltage required to tune through all the modes is < 40V and the resonant frequency of the mirror is in the 10s of MHz order of magnitude. When coupled with a multimode laser of a sufficiently broad lasing profile this setup should enable a tuning range > 72nm with a SMS >20dB.</p> / Master of Applied Science (MASc)
426

Study of ultrashort laser-pulse induced ripples formed at the interface of silicon-dioxide on silicon

Liu, Bing 04 1900 (has links)
<p>In this thesis, the ripple formation at the interface of SiO2 and Si were studied in a systematic fashion by irradiating the SiO2-Si samples with ultrashort laser pulses under a broad variety of experimental conditions. They consist of di↵erent irradiating laser wavelengths, incident laser energies, translation speeds, translation directions, spot sizes of the laser beam, as well as oxide thicknesses. The ripples produced by laser irradiation are examined using various microscopy techniques in order to characterize their surface morphology, detailed structures, crystalline properties, and so on. For the experiments carried out at ! = 800 nm, the ripples formed on the SiO2-Si sample with an oxide thickness of 216 nm were first observed under optical microscopy and SEM. After removing the oxide layer with HF solution, the surface features of the ripples on the Si substrate were investigated using SEM and AFM techniques. Subsequently, by means of TEM and EDX analysis, the material composition and crystallinity of the ripples were determined. It is concluded that the ripples are composed of nano-crystalline silicon. In addition to the 216 nm oxide thickness, other oxide samples with di↵erent oxide thicknesses, such as 24, 112, 117, 158 and 1013 nm, were also processed under laser irradiation. The ripple formation as a function of the laser energy, the translation direction and the spot size is discussed in detail. Furthermore, the ripples created at the SiO2-Si interface are compared with</p> <p>the LIPSS created on pure silicon samples that were processed under similar laser irradiation conditions. The spatial periodicities of the ripples were evaluated to be in the range of between 510 nm and 700 nm, which vary with the oxide thickness and other laser parameters. For the experiments using the ! = 400 nm laser pulses, it is found that ripples can also be formed at the SiO2-Si interface, which have spatial periodicities in the range of between 310 nm and 350 nm depending on the oxide thickness. The ripple formation at this 400 nm wavelength as a function of the laser energy, the translation speed, and translation direction is considered as well. For the case of ! = 400 nm irradiation, a comparison is also made between the interface ripples on the SiO2-Si samples and the LIPSS on a pure Si sample. Through FIB-TEM and EDX analysis, it confirmed that the ripples were produced in the substrate while the oxide layer maintained its structural integrity. In addition, the ripples are composed of nano-crystalline silicon whose crystallite sizes are on the order of a few nanometers. Apart from irradiating oxide samples with femtosecond laser pulses, which applies to the two cases of ! = 800 and 400 nm mentioned above, oxide samples with an oxide thickness of 112 nm were irradiated with picosecond laser pulses at ! = 800 nm whose pulse durations are 1 ps and 5 ps, respectively. However, no regular ripples can be produced at the SiO2-Si interface while maintaining the complete integrity of the oxide layer.</p> / Master of Applied Science (MASc)
427

Thermal Optimization of Flat Plate PCM Capsules in Natural Convection Solar Water Heating Systems

Sarafraz, Padideh January 2014 (has links)
<p>This research is concerned with CFD modelling of thermal energy storage tanks containing water with submerged phase change materials (PCM). Under appropriate operating conditions, the energy density of this hybrid system can be significantly increased (two to five times) relative to a system containing water only. However, due to low thermal conductivity of phase change materials, the geometry and configurations of the PCM capsules in the tank should be optimized. This research focused on the assessment of flat plate PCM modules submerged in a rectangular water tank. The encapsulation of the PCM within the slender flat plates resulted in a large PCM surface area and a reduction in the internal heat transfer resistance. The water was heated by coils placed at the bottom of the tank. The resulting natural convection currents acted to transfer heat from the hot coils to the PCM modules which were treated as isothermal at the PCM melt temperature. It is concluded that the charge rate of the system increases to 2.8 times by increasing the PCM volume percentage from 2.5% to 15%. However for PCM volume percentages of more than 15%, the area of the PCM became much more than the area of the coil (around 15 times) in a way that the charge rate of the system started to be controlled by the coil. In this stage, the charge rate of the system remained constant, and adding modules to the system only increased the heat capacity of the system. Therefore the charge rate of the system could only increase if the coil surface area was increased. The heat transfer coefficients of the PCM modules and coil tubes were higher than those evaluated by the experimental correlations for natural convection. This was due to the recirculation of the flow in the tank “pumping effect” created by the coil for PCM modules and by the PCM modules for the coil. It was also concluded that superheating of the PCM surface temperature decreases the heat transfer rate to the PCM significantly, and the charge rate of the system varies linearly with the temperature difference between the PCM modules and the coil.</p> / Master of Applied Science (MASc)
428

Simulating and Testing the Polarimetric Response of the X-ray Polarimetry Telescope XL-Calibur / Simulering och Testning av Polarimetriegenskaperna hos Röntgenpolarimetriteleskopet XL-Calibur

af Malmborg, Filip January 2022 (has links)
X-ray polarimetry, the study of the polarisation of X-ray light, is a powerful and rapidly developing tool for astrophysics, which promises to help answer outstanding questions about the physics of extreme objects such as pulsars, X-ray binaries and active galactic nuclei. The balloon-borne telescope XL-Calibur will be the first instrument to study the polarisation of hard X-rays (with energies between 10 and 100 keV) in detail, correlating with the soft X-ray observations of IXPE to provide further tests of polarisation-dependent x-ray emission models in extreme objects. The working principles of XL-Calibur are described, together with the necessary steps to measure the polarisation of X-rays. In these steps, Geant4 simulations of the telescope play a vital role, and the simulations are thus described in detail, together with the experiments done to validate the simulations. These experiments were performed at Esrange, Sweden during the XL-Calibur flight campaign in May of 2022, and the experimental setup and design of the validation experiments are described, as well as the specific simulations performed to replicate the experiment. The simulations show very good agreement with validation experiments, achieving a simulated modulation factor (a measure of the polarimetric response intrinsic to the detector) of 41.88% ± 0.17%, within one standard deviation of the measured 41.95% ± 0.18%. The optical effects of the XL-Calibur X-ray mirror is also simulated to good agreement with experimental results, necessary for simulating flight observations. Thus, the simulations can be used to simulate XL-Calibur for polarisation measurements and analysis. Furthermore, the effect on polarisation parameters of the mirror focal spot being offset is investigated. It is shown that it affects the modulation factor and thus the measured polarisation parameters, increasing the importance of using simulations to replicate and compensate for these effects during a data-taking flight with XL-Calibur. / Röntgenpolarimetri, att undersöka polariseringen hos röntgenljus, är ett kraftfullt redskap inom astrofysiken som är under snabb utveckling. Förhoppningen är att tekniken ska hjälpa till att lösa obesvarade frågor inom fysiken som beskriver extrema objekt såsom pulsarer, röntgenbinärer och aktiva galaxkärnor. Det ballongburna teleskopet XL-Calibur kommer att vara det första instrumentet som studerar polariseringen av hårda röntgenstrålar (med energi mellan 10 och 100 keV) i detalj, och genom att korrelera med IXPEs observationer i mjuka röntgenstrålar kommer polarisationsberoende modeller för bildandet av röntgenstrålar runt extrema objekt att testas. En beskrivning av hur XL-Calibur fungerar ges, tillsammans med de nödvändiga stegen för att mäta polariseringen hos röntgenljus. I dessa steg är simulering av teleskopet i Geant4 en vital del, och simuleringen beskrivs därav ingående tillsammans med experimenten som gjordes för att validera simuleringen. Dessa experiment utfördes på Esrange, Sverige i maj 2022, före XL-Caliburs första flygning. Experimentuppställningen och utformningen av dessa valideringsexperiment beskrivs tillsammans med de specifika simuleringar som gjordes med mål att replikera experimenten. Simuleringarna visar mycket god överensstämmelse med experimenten, med en modulationsfaktor (ett instrumentspecifikt mått av polarisationsgraden) på 41.88% ± 0.17%, inom en standardavvikelse från experimentens 41.95% ± 0.18%. Även de optiska effekterna från XL-Caliburs röntgenspegel simuleras och visar god överensstämmelse med mätningar, vilket är nödvändigt för att kunna simulera data tagen under en flygning. Därmed kan simuleringarna användas för att göra polarisationsmätningar och -analys. Slutligen görs en undersökning av effekten på polarisationsparametrarna av förskjutning av röntgenspegelns fokus. Denna visar att modulationsfaktorn och därmed polarisationsparametrarna ändras på ett betydande vis, vilket ökar vikten av att använda simuleringar för att reproducera och kompensera för dessa effekter under en datainsamlingsflygning med XL-Calibur.
429

Surface Characterization using Radiometric and Fourier Optical Methods

Hansson, Peter January 2003 (has links)
This thesis treats static and dynamic surface characterization using radiometric and Fourier optical methods. A Fourier optical method has been developed for real time image processing in paper production and printing applications. It has been shown that the method can be used to measure crepe frequency, an important parameter in tissue paper production, as well as to monitor the wire mark pattern at paper web velocities of up to 20 m/s. The wire mark pattern has been used to measure dimensional variations across a paper web. These are important for the mechanical properties of paper. Imaging of the moving surfaces onto a spatial light modulator, necessary for Fourier optical analysis of opaque objects, constitutes a motion blur problem. This problem has been solved by means of optical motion compensation using a rotating mirror. A rotating mirror system has also been developed for the inspection of small particles fixed to a rotating sample disc. The optical motion compensation configurations have made exposure times of more than two orders of magnitude longer than the exposure time without compensation possible. A light scattering model for opaque objects, for example coated paper, has also been developed and verified, with a coefficient of determination between theory and measurement ranging from r2=0.84 to r2=0.98, on various paper samples. The light scattering model has been used in the development of an instrument based on the photometric stereo principle. In this instrument the reflectance (or color) and topography of opaque samples are determined from two or more images of the sample illuminated from different directions. The method has been successfully used for studies of the relation between topography and print results in gravure and flexographic printing. Comparisons of surface height profiles measured with the photometric stereo method and profiles obtained with mechanical and optical scanning stylus instruments have shown coefficients of determination of up to r2=0.97. The main advantages of the method are the high speed, the scalability and the ability to obtain reflectance and surface height maps of a surface simultaneously.
430

Spectral Mammography with X-Ray Optics and a Photon-Counting Detector

Fredenberg, Erik January 2009 (has links)
Early detection is vital to successfully treating breast cancer, and mammography screening is the most efficient and wide-spread method to reach this goal. Imaging low-contrast targets, while minimizing the radiation exposure to a large population is, however, a major challenge. Optimizing the image quality per unit radiation dose is therefore essential. In this thesis, two optimization schemes with respect to x-ray photon energy have been investigated: filtering the incident spectrum with refractive x-ray optics (spectral shaping), and utilizing the transmitted spectrum with energy-resolved photon-counting detectors (spectral imaging). Two types of x-ray lenses were experimentally characterized, and modeled using ray tracing, field propagation, and geometrical optics. Spectral shaping reduced dose approximately 20% compared to an absorption-filtered reference system with the same signal-to-noise ratio, scan time, and spatial resolution. In addition, a focusing pre-object collimator based on the same type of optics reduced divergence of the radiation and improved photon economy by about 50%. A photon-counting silicon detector was investigated in terms of energy resolution and its feasibility for spectral imaging. Contrast-enhanced tumor imaging with a system based on the detector was characterized and optimized with a model that took anatomical noise into account. Improvement in an ideal-observer detectability index by a factor of 2 to 8 over that obtained by conventional absorption imaging was found for different levels of anatomical noise and breast density. Increased conspicuity was confirmed by experiment. Further, the model was extended to include imaging of unenhanced lesions. Detectability of microcalcifications increased no more than a few percent, whereas the ability to detect large tumors might improve on the order of 50% despite the low attenuation difference between glandular and cancerous tissue. It is clear that inclusion of anatomical noise and imaging task in spectral optimization may yield completely different results than an analysis based solely on quantum noise. / QC 20100714

Page generated in 0.0638 seconds