• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 672
  • 107
  • 73
  • 63
  • 27
  • 25
  • 20
  • 14
  • 9
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1287
  • 256
  • 219
  • 179
  • 172
  • 152
  • 144
  • 130
  • 118
  • 103
  • 89
  • 87
  • 86
  • 85
  • 75
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Development of a multiplexing biosensor platform using SERS particle immunoassay technology

Kumarswami, Neelam January 2014 (has links)
The purpose of this study is to demonstrate the ability of surface enhanced Raman scattering (SERS) active particles to enable multiplexed immunoassays in a lateral flow format for point of care (POC) testing. The SERS particles used for this study are chemically active glass coated gold particles, containing tracer molecules which in principle can be chosen to provide Raman Spectra with unique features allowing multiple tracers to be simultaneously measured and distinguished without interference between each other. Lateral flow immunoassay technology is the important part of this study and can be conveniently packaged for the use of other than highly skilled technicians outside of the laboratory. A well-known (single channel - simplex) device for the pregnancy test is a typical example of the lateral flow assay. Similar formats have been/are being developed by others for a range of POC applications – but most diagnostic applications require simultaneous determination of a range of biomarkers and multiplexed assays are difficult to achieve without significant interference between the individual assays. This is where SERS particles may provide some advantages over existing techniques. Cardiac markers are the growing market for point of care technology therefore biomarkers of cardiac injury (Troponin, myoglobin and CRP) have been chosen as a model. The object of the study is to establish the proof of concept multiplexing assay using these chosen biomarkers. Thus, initially all different particles were characterised in single and mixture form. Also development of conjugate chemistry between antibodies for each analyte that have been purchased from commercial sources and SERS particles were analysed using different conditions like buffer, pH and antibody loading concentration to get the optimum intensity. The selected SERS particles and their conjugates were tested for size, aggregation and immune quality using a range of techniques: ultraviolet-visible (UV/Vis) absorption spectroscopy, dynamic light scattering (DLS) and lateral flow assay. These characterisations methodologies gave the understanding of optimum conditions of the each conjugates and individual’s behaviour in mixture conditions as well. After the characterisation all conjugates were tested singularly on the lateral flow assay using buffers and serum. The results of this single analyte immunoassay explained the individual’s bioactivity on the lateral flow strip. Further in study, multiplex assay have been demonstrated in serum. These outcomes have described each candidate characteristic in a mixture form on the lateral flow strip. In order to get the optimum Raman intensity from multiplex assay, the detection and capture antibodies loading concentrations were tuned in the assay. Later on different combinations (high, medium and low concentrations) of all three analytes were analysed and has found some interferences in multiplex assay. To investigate these issues various aspect were considered. First of all, different possibilities of non-specific interactions between the co-analytes and antibodies were tested. In addition, steric hindrance and optical interference investigations were performed via several assays and analysis using Scanning electron microscopy. The outcomes have confirmed related optical interferences. Therefore other assay (wound biomarkers) established to eliminate the interferences. In summary, the works reported here have built and test the equipment and necessary reagents for individual assays before moving on the more complicated task. In addition, the entire study has given a deep knowledge of multiplex assay on a single test line including the investigation of the issues for selected cardiac biomarkers and their applications in the future.
272

Multi-functional fitness chair for light weight trainer

Fan, Rong, Wu, Peng January 2016 (has links)
Nowadays, physical inactivity has become a global problem. According to the research, about 5.3 million deaths all over the world in 2008 could be attributed to inactivity [1]. However, it is enough to do a little exercise every day to reduce the risk of premature deaths by as much as 30 percent. Due to the increasing working pressure, people do not have enough time to go to gym and do exercises, which means that the design of multi-functional fitness chair is necessary so that people can do exercise at home at any time.There have already been many similar household fitness products in the market, but most of them take up large space and the training part is very simple. In comparison, the multi-function fitness chair designed in this thesis combines several fitness equipment together in one chair, so it would save a lot of space, and yet provides possibility to perform versatile exercise.The product was designed in Autodesk Inventor 2015, and finite element analysis was performed in Inventor 2015 and for checking the strength and safety of the design.
273

Diatoms in Photonics and Plasmonics: Characteristics and Applications

Alvarez, Christine January 2016 (has links)
We have investigated some of the many photonic and plasmonic properties of the diatom Coscinodiscus wailesii. We start by showing that when diatom frustules are converted to high-index magnesium silicide while maintaining their structure, they exhibit a broad (1μm - 2μm) photonic bandgap that varies in wavelength according to the position and angle of the incident light on the frustule. We then demonstrate the use of the micro and nanostructured silica diatom frustule as a low-cost, easily prepared substrate for surface-enhanced Raman spectroscopy by coating the frustule in 25 nm of silver and a monolayer of thiophenol. Some potential applications of diatoms to water quality measurements are suggested, and steps are taken to image a diatom frustule and chloroplasts simultaneously in vivo using rhodamine 19 dye and fluorescence microscopy. We propose future experiments that could ascertain whether there is any biological effect of the light filtering properties of the diatom frustule, and put forth some suggestions as to how to influence the morphology and photonic properties of the frustule via chemical contaminants in the diatom seawater growth medium.
274

A CHARACTERIZATION OF THE OXIDATION-REDUCTION CYCLE AND SURFACE MORPHOLOGY OF ELECTROCHEMICAL SURFACE ENHANCED RAMAN SCATTERING

Tuschel, David Daniel, 1957- January 1986 (has links)
No description available.
275

Enhanced Flight Termination System Study Overview and Status

Cronk, Steven G., Tobin, Maria A., Sakahara, Robert D. 10 1900 (has links)
International Telemetering Conference Proceedings / October 22-25, 2001 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The Range Commanders Council (RCC) Range Safety Group (RSG) is conducting a study into the next generation of ground-based flight termination technology, known as the Enhanced Flight Termination System (EFTS) study. The study was initiated by the RCC in April 2000 and scheduled to be complete in March 2002. The Government is performing the study with support from contractors and academia. In addition to the RSG, the Telemetry Group, Frequency Management Group, Telecommunications and Timing Group of the RCC support the study. Additionally, the National Security Agency is providing key support along with vendors who design, build, and test range safety systems. This paper will describe the background, goals, and current status of the study.
276

Φασματοσκοπικός έλεγχος αποδέσμευσης (νανο)ϋλικών ενσωματωμένων σε βιοπολυμερή

Ανδρικάκη, Σόνια 04 February 2014 (has links)
Η παρούσα διατριβή εξειδίκευσης αποτελεί το προοίμιο μιας μακρόπνοης εμπλοκής του εργαστηρίου υλοποίησής της στη μελέτη ενδεχόμενης μετανάστευσης ουσιών που χρησιμοποιούνται ως ενισχυτικά φραγής ή/και ως χημικοί αισθητήρες σε βιοπολυμερικές συσκευασίες τροφίμων και αποδέσμευσής τους σε προσομοιωτές τροφίμων. Στο πλαίσιο αυτό, η εργασία αυτή αποτελεί μια προσπάθεια ανάδειξης της μεθόδου επιφανειακής ενίσχυσης της σκέδασης Raman (Surafce Enhanced Raman Scattering) ως κατάλληλης για τον ποσοτικό προσδιορισμό μικρού μοριακού βάρους ενώσεων που ενδεχομένως αποδεσμεύονται σε υδατικά διαλύματα ή/και συγκεκριμένους προσομοιωτές τροφίμων. Η μελέτη εστιάστηκε στην ελεγχόμενη αποδέσμευση φαρμακευτικών ουσιών από μια βιοπολυμερική μήτρα κυρίως κατά το πρώιμο στάδιο της μελέτης και τις παραμέτρους που επηρεάζουν το φαινόμενο αυτό. Βασικός στόχος της μελέτης ήταν η κατά το δυνατό μείωση του ορίου ανίχνευσης με SERS της αποδεσμευόμενης ουσίας με την εμβάπτιση της βιοπολυμερικής μήτρας που την εμπεριέχει σε πρότυπα υδατικά διαλύματα. Πραγματοποιήθηκε μια διεξοδική μελέτη των υποστρωμάτων που χρησιμοποιούνται στο SERS και συγκεκριμένα του νανοκολλοειδούς αργύρου (Ag). Για τον σκοπό αυτό, πραγματοποιήθηκαν πειράματα τα οποία έδειξαν την εξάρτηση της έντασης SERS από τη συσσωμάτωση των υποστρωμάτων Ag συναρτήσει του χρόνου και του παράγοντα συσσωμάτωσης, NaCl. Η εφαρμογή του SERS σε μελέτες ουσιών εξαιρετικά χαμηλών συγκεντρώσεων αναδεικνύεται ως ένα πολύ ενδιαφέρον πεδίο έρευνας. Επίσης, ως πρότυπο πείραμα, παρουσιάζεται μεθοδολογία μελέτης με την τεχνική SERS της αποδέσμευσης του αντικαρκινικού φαρμάκου Μitoxantrone (ΜΤΧ) από εμπορικά ράμματα Maxon. Για το σκοπό αυτό, παρασκευάστηκαν πολυμερικά υμένια με εγκλωβισμένη τη δραστική ουσία και η μελέτη της αποδέσμευσης της σε νερό και PBS (phosphate buffered saline) πραγματοποιήθηκε με SERS και UV-Vis, αντίστοιχα. Η φασματοσκοπία UV-Vis χρησιμοποιήθηκε συμπληρωματικά. Στηριζόμενοι στη μεθοδολογία που αναπτύξαμε εξάγαμε ποσοτικά αποτελέσματα από τρία διαφορετικά εργαστηριακά δείγματα, τα οποία προήλθαν από ανάμιξη εμπορικών ραμμάτων Maxon με 1% κ.β. MTX: (α) στην άμορφη φάση έπειτα από ταχεία ψύξη του τήγματος, (β) στην ημικρυσταλλική φάση με σχετικά χαμηλό ποσοστό κρυσταλλικότητας, που λάβαμε έπειτα από ανόπτηση της άμορφης φάσης για περιορισμένο χρόνο στη θερμοκρασία κρυστάλλωσης και (γ) σε μια επίσης ημικρυσταλλική φάση με αρκετά μεγάλο ποσοστό κρυστάλλωσης (όσης και τα εμπορικά ράμματα). Τα αποτελέσματα δείχνουν πως υπάρχει συσχέτιση μεταξύ κρυσταλλικότητας και αποδέσμευσης του φαρμάκου, με τα μικρότερα ποσά αποδέσμευσης στην περίπτωση του άμορφου δείγματος. Αυτό που παρατηρήθηκε στα πρώιμα στάδια της αποδέσμευσης από τις μετρήσεις SERS φαίνεται να επαληθεύεται από αντίστοιχα αποτελέσματα σε μεταγενέστερα στάδια αποδέσμευσης που λάβαμε με εφαρμογή της συμβατικής τεχνικής απορρόφησης ορατού – υπεριώδους (UV-Vis). Ωστόσο, οι ποσοτικές μετρήσεις με τη χρήση του SERS σε πολύ μικρές συγκεντρώσεις έδειξαν μεγαλύτερη ανιχνευτική ευαισθησία σε σχέση με αυτές που πραγματοποιήθηκαν με την απορρόφηση UV-Vis. Συμπερασματικά, το SERS δείχνει ικανό στον ποσοτικό προσδιορισμό ενεργών ουσιών που αποδεσμεύονται από βιοσυμβατά πολυμερικά συστήματα μεταφοράς δραστικών ουσιών σε πολύ μικρές συγκεντρώσεις. / This thesis of specialization is the precursor of a long-term involvement of the laboratory of Applied Molecular Spectroscopy of FORTH/ICE-HT in the implementation of the study of the migration of substances used as barrier and/or as chemical sensors in biopolymer based food packaging and their release into food simulants. In this context, this work attempts to highlight the method of surface enhanced Raman scattering (SERS) as appropriate for quantifying low molecular weight compounds that may be released in aqueous solutions and/or specific food simulants. The study focused on the controlled release of pharmaceuticals from a biopolymeric matrix mainly during the early stage of the study and the parameters affecting this phenomenon. The main objective of the study was to reduce SERS detection limit of the released substance by emerging the substance-incorporated biopolymeric matrix in standard aqueous solutions. In this context, we developed methods to maximize SERS enhancement and consequently reduce the limit of detection of an active substance, Mitoxantrone (MTX). This was achieved by a thorough study of the substrates used in SERS, namely nanocolloidal silver (Ag) suspensions. For this purpose, we contacted experiments which show the dependence of the SERS intensity on the aggregation of Ag substrates as a function of both time and the aggregating agent, NaCl. Also, as a standard experiment, present SERS methodology was applied in the study of the release of the anticancer drug Mitoxantrone (MTX) from commercially available sutures, Maxon. For this purpose, polymeric films prepared with the encapsulated active substance were immersed either in water or/and in PBS (phosphate buffered saline) and the release of MTX was probed by both SERS and UV-Vis. Based on the developed methodology we obtained quantitative results from three different laboratory samples produced by mixing commercial Maxon sutures with 1 wt% MTX: (a) an almost completely amorphous mixture produced by quenching from the melt, (b) a semi-crystalline one possessing low crystallinity that was produced by annealing the amorphous sample at the temperature close to the crystallization one and (c) a semi-crystalline one possessing high crystallinity similar to the commercial product. The results indicate a correlation between crystallinity and drug release rate; the more amorphous the sample is the less quantity of the drug is released. SERS was able to probe the active agent at the early state of release; UV-Vis has supported these results at a later state of the release process. In conclusion, SERS may enable low concentration quantitative assessment of controlled release of drugs from biopolymer-based delivery systems.
277

Stability of polymers used for enhanced oil recovery

Slaughter, Will Sherman, 1980- 02 November 2010 (has links)
The purpose of this work was to study polymer degradation mechanisms as well as ways to mitigate it. In the area of chemical stability, defined as divalent cation tolerance of acrylic polymers as hydrolysis increases, use of the n-vinyl pyrrolidone (NVP) monomer helps to preserve viscosity and tolerate higher calcium concentrations over those polymers without NVP. Also, ethylenediaminetetraacetate tetrasodium salt (EDTA-Na+4) is shown to sequester calcium ions at alkaline conditions (pH>10) and, in the case of lab-aged post-hydrolyzed poly(AM-co-AMPS), helps to retain full viscosity at all calcium concentrations when EDTA is present at a stoichiometric equivalence of calcium. Many discrepancies exist in the literature concerning the presence or absence of degradation under various field or laboratory conditions. Carbonate and bicarbonate, which are typically present in natural waters but often neglected in lab-prepared brines, prove to be a hidden variable in resolving why Shupe (1981) saw no loss in viscosity when sodium dithionite was added to polymer in the presence of oxygen (with bicarbonates) but others (Knight, 1973 and Levitt and Pope, 2008) observed severe degradation under similar conditions (but without bicarbonates). A commercial HPAM polymer (Flopaam 3630S) has been shown to be stable in the presence of ferrous iron in the absence of oxygen, clarifying an apparent discrepancy in the literature between the results of Yang and Treiber (1985) and Kheradmand (1987). Dissolved oxygen (DO) levels, and not redox potential (ORP) measurements, are often reported in polymer stability research on oxidative degradation. ORP is shown to be a better measure of the onset of degradation because oxygen is initially being consumed and may not appear until substantial degradation has occurred. Although generally believed to be a detriment to polymer stability in the field, aeration of iron-laden source water prior to hydration of polymer may be beneficial in certain cases where exposure to air in unavoidable. Also, a novel process of safely producing sodium dithionite in the field proves to perform better in terms of long-term polymer stability in anaerobic conditions than the traditional method of using a solution made from powder dithionite. Finally, a pre-sheared 5 million Dalton HPAM is successfully injected into a 3 mD carbonate reservoir core plug. Remarkably, permeability reduction factors remain at values close to unity. However, pressure data from ASP tertiary corefloods suggest that polymer is not feasible for field injections. / text
278

A SYSTEMATIC STUDY OF THERMODYNAMIC AND TRANSPORT PROPERTIES OF LAYERED Ca<sub>n+1</sub>(Ru<sub>1-x</sub>Cr<sub>x</sub>)<sub>n</sub>O<sub>3n+1</sub>

Durairaj, Vinobalan 01 January 2008 (has links)
Orbital degrees of freedom play vital role in prompting novel phenomena in ruthenium based Ruddlesden-Popper compounds through coupling of orbits to spin and lattice. Physical properties are then particularly susceptible to small perturbations by external magnetic fields and/or slight structural changes. Current study pertains to the impact when a more-extended 4d Ruthenium ion is replaced by a less-extended 3d Chromium ion. Perovskite CaRuO3 (n=∞) is characterized by borderline magnetism and non- Fermi liquid behavior – common occurrences in quantum critical compounds. Remarkably, Cr substitution as low as x=0.05 abruptly drives CaRu1−xCrxO3 from a paramagnetic state to an itinerant ferromagnetic state (MS~0.4μB/f.u.), where TC=123K for x=0.22. The Cr-driven magnetism is highly anisotropic suggesting an important role of spin-orbit coupling. Unlike other chemical substitutions in the compound, Cr does not induce any Metal-Insulator transition that is expected to accompany the magnetic transition. The results indicate a coupling of Ru-4d and Cr-3d electrons that is unexpectedly favorable for itinerant ferromagnetism, which often exists delicately in the ruthenates. Bilayered Ca3Ru2O7 (n=2), an abode of huge anisotropy, exhibits a wide range of physical properties – Colossal Magnetoresistance occurring only when the spin polarized state is avoided, Antiferromagnetic-Metallic (AFM-M) state, Quantum Oscillations (periodic in 1/B and in B) that are highly angular dependent, to mention a few. Experimental results obtained so far provide a coherent picture illustrating that orbital order and its coupling to lattice and spin degrees of freedom drive the exotic electronic and magnetic properties in this Mott-like system. Transport and thermodynamic studies on Ca3(Ru1-xCrx)2O7 (0 ≤ x ≤ 0.20) reveal that AFM-M region is broadened with x that ultimately reaches 70K for x=0.20 (~8K for x=0). In this region, electron transport is enhanced and inhibited when B is applied along crystal’s respective axes, confirming an intrinsic half-metallic behavior. Moreover, the difference in coercivities of Ru and Cr magnetic ions pave way for the first-ever observation of a strong spin-valve effect in bulk material, a quantum phenomenon so far realized only in multilayer thin films or heterostructures. This discovery opens new avenues to understand the underlying physics of spin-valves and fully realize its potential in practical devices.
279

LIPID-BASED PACLITAXEL AND DOXORUBICIN NANOPARTICLES TO OVERCOME P-GP-MEDIATED DRUG RESISTANCE IN SOLID TUMORS

Dong, Xiaowei 01 January 2009 (has links)
Multidrug resistance (MDR) is a major obstacle limiting chemotherapeutic efficacy. The purpose of these studies was to investigate the potential application of injectable paclitaxel (PX) and doxorubicin (Dox)-loaded nanoparticles (NPs) engineered from oil-in-water microemulsion precursors for overcoming P-glycoprotein (P-gp)- mediated drug resistance in solid tumors. An in-vitro study was performed to test whether the oil (stearyl alcohol and cetyl alcohol) used to make lipid nanoparticles could be metabolized. The results showed that the concentrations of the fatty alcohols within nanoparticles, which were quantitatively determined over time by gas chromatography, decreased to only 10-20% of the initial concentration after 15-24 h of incubation with horse liver dehydrogenase (HLADH) and NAD+ at 37ºC. Moreover, the surfactant Brij 78 (polyoxyethylene 20-sterayl ether) in the nanoparticles influenced the activity of the enzyme. Novel Cremophor EL-free paclitaxel-loaded nanoparticles were developed using experimental design combining Taguchi array and sequential simplex optimization. The resulting PX G78 and PX BTM NPs were stable at 4ºC over five months and in PBS at 37ºC over 102 h. Release of PX from PX NPs was slow and sustained without initial burst release. Interestingly, PX BTM NPs could be lyophilized without cryoprotectants and without changing any physiochemical properties and bioactivities. Cytotoxicity studies in breast cancer MDA-MB-231 cells showed that PX NPs have similar anti-cancer activities compared to Taxol. Optimized Dox-loaded NPs were prepared using an ion-pair agent, sodium tetradecyl sulfate (STS), to mask Dox charge and to enhance its entrapment in NPs. In-vitro cytotoxicity studies were carried out in both sensitive and resistant human cancer cells treated with PX and Dox-loaded NPs. All of drug-loaded NPs decreased IC50 values by 6-13-fold in resistant cells compared to free drugs. A series of in-vitro assays were used to understand the underlying mechanisms. The results, in part, showed that the NPs inhibited P-gp and transiently depleted ATP, leading to enhanced uptake and prolonged retention of the drugs in P-gp-overexpressing cancer cells. Finally, in-vivo anti-cancer efficacy studies were performed using pegylated PX BTM NPs after intravenous (i.v.) injection and showed marked anti-cancer efficacy in nude mice bearing resistant NCI/ADR-RES tumors versus all control groups. These results suggest that NPs may be used to both target drug and biological mechanisms to overcome MDR.
280

Engineering and economics of enhanced oil recovery in the Canadian oil sands

Hester, Stephen Albert, III 03 September 2014 (has links)
Canada and Venezuela contain massive unconventional oil deposits accounting for over two thirds of newly discovered proven oil reserves since 2002. Canada, primarily in northern Alberta province, has between 1.75 and 1.84 trillion barrels of hydrocarbon resources that as of 2013 are obtained approximately equally through surface extraction or enhanced oil recovery (EOR) (World Energy Council, 2010). Due to their depth and viscosity, thermal based EOR will increasingly be responsible for producing the vast quantities of bitumen residing in Canada’s Athabasca, Cold Lake, and Peace River formations. Although the internationally accepted 174-180 billion barrels recoverable ranks Canada third globally in oil reserves, it represents only a 9-10% average recovery factor of its very high viscosity deposits (World Energy Council, 2010). As thermal techniques are refined and improved, in conjunction with methods under development and integrating elements of existing but currently separate processes, engineers and geoscientists aim to improve recovery rates and add tens of billions of barrels of oil to Canada’s reserves (Cenovus Energy, 2013). The Government of Canada estimates 315 billion barrels recoverable with the right combination of technological improvements and sustained high oil prices (Government of Canada, 2013). Much uncertainty and skepticism surrounds how this 75% increase is to be accomplished. This document entails a thorough analysis of standard and advanced EOR techniques and their potential incremental impact in Canada’s bitumen deposits. Due to the extraordinary volume of hydrocarbon resources in Canada, a small percentage growth in ultimate recovery satisfies years of increased petroleum demand from the developing world, affects the geopolitics within North America and between it and the rest of the world, and provides material benefits to project economics. This paper details the enhanced oil recovery methods used in the oil sands deposits while exploring new developments and their potential technical and economic effect. CMG Stars reservoir simulation is leveraged to test both the feasible recoveries of and validate the physics behind select advanced techniques. These technological and operational improvements are aggregated and an assessment produced on Canada’s total recoverable petroleum reserves. Canada has, by far, the largest bitumen recovery operation in the world (World Energy Council, 2010). Due to its resource base and political environment, the nation is likely to continue as the focus point for new developments in thermal EOR. Reservoir characteristics and project analysis are thus framed using Canada and its reserves. / text

Page generated in 0.4825 seconds