• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 672
  • 107
  • 73
  • 63
  • 27
  • 25
  • 20
  • 14
  • 9
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1287
  • 256
  • 219
  • 179
  • 172
  • 152
  • 144
  • 130
  • 118
  • 103
  • 89
  • 87
  • 86
  • 85
  • 75
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Metal Anion Removal from Wastewater Using Chitosan in a Polymer Enhanced Diafiltration System

Shetty, Ameesha R 04 May 2006 (has links)
Discharge of metal containing effluents into water has been a cause of major concern. Traditional treatment methods are proving to be ineffective and expensive. Chitosan was studied as a potential biosorbent due to its positive charge and relatively low cost. The study involves evaluating the metal binding performance of chitosan in a polymer enhanced diafiltration (PEDF) system which uses an ultrafiltration membrane to retain the chitosan which, in turn, binds the metal, thereby preventing passage into the permeate stream. Conditions for binding such as pH, concentration of polymer and chromium were studied. Optimal performance was obtained when the system was operated at pH values lower then the pKa of chitosan i.e. 6.3. Using 6 g/L chitosan at pH 4.0, chromium concentration was reduced to less than 1mg/L from a feed concentration of 20 mg/L. Equilibrium dialysis experiments were done to study the kinetics of binding and the uptake of metal per gram of polymer. Rheological measurements demonstrated that in the presence of 1-100 mM chromate, chitosan was found to be slightly shear-thickening at low concentrations such as 4 g/L and 6 g/L whereas it was slightly shear-thinning at higher concentrations like 12 g/L and 20 g/L This suggests that neutralization of chromium anions is due to the interaction of multiple chitosan molecules. This result is consistent with the relatively stiff nature of the polysaccharide. Overall, this study suggests that some modification of the native polymer would be required to improve uptake and make it an industrially workable process.
302

Investigation of Enhanced Soot Deposition on Smoke Alarm Horns

Phelan, Patrick 07 January 2005 (has links)
Post-fire reconstruction often includes the analysis of smoke alarms. The determination of whether or not an alarm has sounded during a fire event is of great interest. Until recently, analysis of smoke alarms involved in fires has been limited to electrical diagnostics, which, at best, determined whether or not a smoke alarm was capable of alarm during the fire event. It has subsequently been proposed that evaluation of the soot deposition around a smoke alarm horn can be used to conclude whether a smoke alarm has sounded during a fire event. In order to evaluate the effectiveness of using enhanced soot deposition patterns as an indication of smoke alarms sounding within a fire event, four test series were undertaken. First, a population of smoke alarms representative of the available market variety of horn configurations was selected. This population was subjected four test series. Test Series 1 consisted of UL/EN style experiments with fuel sources that included flaming polyurethane, smoldering polyurethane, flaming wood crib, and flaming turpentine pool. In Test Series 2, alarms were exposed to "nuisance" products from frying bacon, frying tortillas, burnt toast, frying breading, and airborne dust. Test Series 3 exposed the alarms to the following fire sources: smoldering cable, flaming cable, flaming boxes with paper, and flaming boxes with plastic cups. Test Series 4 included new, used, and pre-exposed smoke alarms that were exposed to two larger scale fires: a smoldering transitioning to flaming cabinet/wall assembly fire and a flaming couch section. The results from all four series were used to generate a hueristic for use in evaluating alarms from fire events. These criteria were blindly tested against the population of alarms to develop a correlation between the criteria and the previously tested smoke alarms. The results support the evaluation of soot deposition on smoke alarms exposed to a fire event as a viable method to determine whether or not an alarm sounded, without false positive or negative identifications.
303

Surface-enhanced Raman spectroscopy for the forensic analysis of vaginal fluid

Zegarelli, Kathryn Anne 05 November 2016 (has links)
Vaginal fluid is most often found at crime scenes where a sexual assault has taken place or on clothing or other items collected from sexual assault victims or perpetrators. Because the victim is generally known in these cases, detection of vaginal fluid is not a matter of individual identification, as it might be for semen identification. Instead, linkages can be made between victim and suspect if the sexual assault was carried out digitally or with a foreign object (e.g., bottle, pool cue, cigarette, handle of a hammer or other tool, etc.). If such an object is only analyzed for DNA and the victim is identified, the suspect may claim that the victim’s DNA is present because she handled and/or is the owner of the object and not because it was used to sexually assault her; identification of vaginal fluid residue would alleviate such uncertainty. Most of the research conducted thus far regarding methods for the identification of vaginal fluid involves mRNA biomarkers and identification of various bacterial strains.1-3 However, these approaches require extensive sample preparation and laboratory analysis and have not fully explored the genomic differences among all body fluid RNAs. No existing methods of vaginal fluid identification incorporate both high specificity and rapid analysis.4 Therefore, a new rapid detection method is required. Surface-enhanced Raman spectroscopy (SERS) is an emerging technique with high sensitivity for the forensic analysis of various body fluids. This technique has the potential to improve current vaginal fluid identification techniques due to its ease-of-use, rapid analysis time, portability, and non-destructive nature. For this experiment, all vaginal fluid samples were collected from anonymous donors by saturation of a cotton swab via vaginal insertion. Samples were analyzed on gold nanoparticle chips.4 This nanostructured metal substrate is essential for the large signal-enhancement effect of SERS and also quenches any background fluorescence that sometimes interferes with normal Raman spectroscopy measurements.5 Vaginal fluid SERS signal variation of a single sample over a six-month period was evaluated under both ambient and frozen storage conditions. Vaginal fluid samples were also taken from 10 individuals over the course of a single menstrual cycle. Four samples collected at one-week intervals were obtained from each individual and analyzed using SERS. The SERS vaginal fluid signals showed very little variation as a function of time and storage conditions, indicating that the spectral pattern of vaginal fluid is not likely to change over time. The samples analyzed over the span of one menstrual cycle showed slight intra-donor differences, however, the overall spectral patterns remained consistent and reproducible. When cycle spectra were compared between individuals, very little donor-to-donor variation was observed indicating the potential for a universal vaginal fluid signature spectrum. A cross-validated, partial least squares – discriminant analysis (PLS-DA) model was built to classify all body fluids, where vaginal fluid was identified with 95.0% sensitivity and 96.6% specificity, which indicates that the spectral pattern of vaginal fluid was successfully distinguished from semen and blood. Thus, SERS has a high potential for application in the field of forensic science for vaginal fluid analysis.
304

NMR studies of enhanced oil recovery core floods and core analysis protocols

Bush, Isabelle January 2019 (has links)
With conventional oil reserves in decline, energy companies are increasingly turning to enhanced oil recovery (EOR) processes to extend the productive life of oilfield wells. Laboratory-scale core floods, in which one fluid displaces another from the pore space of a rock core, are widely used in petroleum research for oilfield evaluation and screening EOR processes. Achieving both macro- and pore-scale understandings of such fluid displacement processes is central to being able to optimise EOR strategies. Many of the mechanisms at play, however, are still poorly understood. In this thesis nuclear magnetic resonance (NMR) has been used for quantitatively, non-invasively and dynamically studying laboratory core floods at reservoir-representative conditions. Spatially-resolved relaxation time measurements (L-T1-T2) have been applied to studying a special core analysis laboratory (SCAL) protocol, used for simulating reservoir oil saturations following initial oil migration (primary drainage) and characterising core samples (capillary pressure curves). Axial heterogeneities in pore filling processes were revealed. It was demonstrated that upon approaching irreducible water saturation, brine saturation was reduced to a continuous water-wetting film throughout the pore space; further hydrocarbon injection resulted in pore pressure rise and wetting film thinning. L-T1-T2 techniques were also applied to a xanthan gum polymer-EOR flood in a sandstone core, providing a continuous measurement of core saturation and pore filling behaviours. A total recovery of 56.1% of the original oil in place (OOIP) was achieved, of which 4.9% was from xanthan. It was demonstrated that deposition of xanthan debris in small pores resulted in small-pore blocking, diverting brine to larger pores, enabling greater oil displacement therein. L-T1-T2, spectral and pulsed field gradient (PFG) approaches were applied to a hydrolysed polyacrylamide (HPAM)-EOR flood in a sandstone core. A total recovery of 62.4% of OOIP was achieved, of which 4.3% was from HPAM. Continued brine injection following conventional recovery (waterflooding) and EOR procedures demonstrated most moveable fluid saturation pertained to brine, with a small fraction to hydrocarbon. Increases in residual oil ganglia size was demonstrated following HPAM-EOR, suggesting HPAM encourages ganglia coalescence, supporting the "oil thread/column stabilisation" mechanism proposed in the literature. NMR relaxometry techniques used for assessing surface interaction strengths (T1/T¬2) were benchmarked against an industry-standard SCAL wettability measurement (Amott-Harvey) on a water-wet sandstone at magnetic field strengths comparable to reservoir well-logging tools (WLTs). At 2 MHz, T1/T2 was demonstrated to be weakly sensitive to the core wettability, although yielded wettability information at premature stages of the Amott-Harvey cycle. This suggests the potential for NMR to deliver faster wettability measurements, in SCAL applications or downhole WLT in situ reservoir characterisation.
305

Raman spectroscopy and its enhancement techniques for the direct monitoring of biotransformations

Westley, Chloe January 2017 (has links)
Protein engineering strategies, such as directed evolution, generate large libraries of enzyme variants, typically in the range of 106-108 variants. However, the availability of rapid, robust high-throughput screening methods has often limited the impact of directed evolution in discovering enzymes with enhanced catalyst performance. Raman spectroscopy is an established analytical technique, providing molecular specific information, permitting analysis in aqueous solutions and as such is an attractive, alternative screening method for biological systems. Although an inherently weak physical phenomenon, enhanced Raman scattering techniques, such as surface enhanced Raman scattering (SERS) and ultraviolet resonance Raman (UVRR) spectroscopy, can be used to overcome the associated sensitivity issues. Herein, we successfully monitored xanthine oxidase (XO) catalysed conversions of xanthine to uric acid, before extending to hypoxanthine, using two contrasting Raman scattering enhanced approaches. Firstly, a SERS-based assay was developed utilising silver nanoparticles to measure analytes directly and quantitatively on micromolar scale, in the absence of chromogenic substrates or lengthy chromatography. Secondly, a UVRR approach was developed enabling monitoring of the XO-mediated reaction in real-time and without the need to quench the system. Significantly, both methods demonstrated over &gt;30 fold reduction in acquisition times (when compared to conventional HPLC analysis), and offered excellent medium-term reproducibility and accuracy of results over significant time periods. Furthermore, investigations were made into developing this SERS-based assay into an enantiomeric screen using another vibrational spectroscopy approach, Raman optical activity (ROA), along with circular dichroism (CD). Successful chiral reduced nanoparticles were synthesised, with multiple characterisation techniques employed, affording enantiopure Au-cysteine and Ag-tyrosine colloids. However, it was not possible to generate consistent and reproducible SEROA responses, with these techniques ultimately being unsuccessful in analysing these chiral sensitive nanoprobes, and thus differentiating between the D- and L- forms. Finally, a novel SERS-based approach, in combination with the standard addition method (SAM), was developed for the routine analysis of uric acid (end product in XO catalysed reaction(s) and biomarker for various diseases), at clinically relevant levels in urine samples from patients. Results were highly comparable and in very good agreement with HPLC analyses, with an average < 9% difference in predictions between the two analytical approaches across all samples analysed, and a 60-fold reduction in acquisition time (when compared with HPLC). Together, the research presented in this thesis demonstrates the suitability of Raman enhanced techniques for quantitative analysis, measuring the analytes directly using a portable Raman instrument and, most importantly, offering significant reductions in acquisition times when compared to established analytical techniques.
306

Cavity-enhanced detection of biologically relevant magnetic field effects

Sheppard, Dean January 2016 (has links)
Magnetoreception is the ability of some animals to use the weak magnetic field of the Earth for navigation over long-distance migrations. It is a well-known phenomenon, but its underlying biophysical mechanisms remain poorly understood. One proposal involves light-induced, magnetically sensitive chemical reactions occurring within cryptochrome proteins, rationalised via the radical pair mechanism (Chapter 1). The absence of evidence in support of this hypothesis is in part due to the lack of sufficiently sensitive techniques to measure magnetic field effects (MFEs) in biological samples. Cavity-enhanced detection, most commonly in the form of cavity ring-down spectroscopy (CRDS) or cavity-enhanced absorption spectroscopy (CEAS), is widely used in the gas phase to provide significant sensitivity gains over traditional single-pass measurements (Chapter 2). However, successful studies in the condensed phase are less prevalent due to the additional background losses inherent to the sample. This thesis reports on the application of broadband (i.e. monitoring > 100nm) variants of CRDS and CEAS to the study of MFEs on the radical recombination reactions of flavin-based systems in solution. The broadband CRDS (BBCRDS) instrument employed in Chapter 4 is able to monitor the spectral changes induced by magnetic fields with submicrosecond time resolution. However, the need to scan both the probe wavelength and time delay to construct time-resolved spectra leads to prohibitively long acquisition times, and hence exposure of sensitive samples to high numbers of photons. The broadband CEAS (BBCEAS) studies reported in Chapter 5 combine the high irradiance and spectral coverage of a supercontinuum radiation (SCR) source with a CCD detector to simultaneously acquire absorption spectra across the visible region (480–700nm). The CW nature of this technique precludes the possibility of following radical pair kinetics in real time. In an effort to combine the respective advantages of these two instruments, which individually have represented powerful advances in capability, a new cavity-enhanced technique is reported for the first time (Chapter 6). The result, optical cavity-enhanced transient absorption spectroscopy (OCTAS), is able to simultaneously monitor spectral evolution and associated MFEs on the microsecond timescale, with comparable sensitivity to the existing techniques. Magnetic responses in animal cryptochrome proteins have successfully been recorded using all three techniques, lending considerable weight to the hypothesis that these molecules are at the heart of the magnetic sense in animals.
307

Productivity enhancement in a combined controlled salinity water and bio-surfactant injection projects

Udoh, Tinuola H. January 2018 (has links)
No description available.
308

Neuro-fuzzy based screening for EOR projects and experimental investigation of identified techniques in oilfield operations

Ramos, Geraldo André Raposo January 2018 (has links)
No description available.
309

Economics of CCS CO2-EOR and permanent CO2 sequestration in the UKCS

Wright, Alfiya January 2018 (has links)
Carbon Capture and Storage (CCS) technology could help reduce anthropogenic CO2 emissions to the atmosphere. So far, CCS has failed to attract government support in the UK due to high costs of implementation. The broad deployment of CO2-EOR could aid the development of CCS by providing additional revenue streams for investors. The success of the CO2- EOR in the United States has raised the question of whether this success could be replicated in the UKCS. This thesis answers these questions by introducing two distinct models, which analyse the similarities and differences between the two oil provinces from the subsurface and economic perspectives. The first model integrates into the economic framework the behaviour of oil and CO2 in a reservoir. The model is applied to an oil field in the North Sea. It analyses whether the screening criteria developed based on the onshore US experience to screen for oil field candidates for the CO2 would be suitable for the oil fields in the UKCS. The second model is a theoretical CO2-EOR with storage model, which analyses how the inclusion of permanent storage changes the economics of CO2-EOR. The CO2-EOR with storage model allows for an endogenous switching point between the CO2-EOR and the permanent CO2 storage phase depending on the various economic factors, such as oil prices, sequestration subsidies and fees, CO2 price, and oil and gas tax rates. The CO2-EOR with storage model shows different behaviour compared to the case without permanent storage. On the policy level, the main difference between the two countries revealed that the UK strongly focuses on cutting CO2 emissions while the U.S. on boosting domestic oil production. Therefore, the third study in this thesis investigates the net carbon footprint of the CO2-EOR activity in the North Sea.
310

New possibilities for metallic nanoshells: broadening applications with narrow extinction bands

Gomes Sobral Filho, Regivaldo 31 May 2018 (has links)
This dissertation comprises experimental studies on the synthesis and applications of metallic nanoshells. These are a class of nanoparticles composed of a dielectric core and a thin metallic shell. Metallic nanoshells play an important role in nanotechnology, particularly in nanomedicine, due to their peculiar optical properties. The overall objectives of the dissertation were to improve the fabrication of these nanoparticles, and to demonstrate new applications of these materials in cancer research and spectroscopy. The fabrication of nanoshells is a multi-step process. Previously to our work, the procedures for the synthesis of nanoshells reported in the literature lacked systematic characterization of the various steps. The procedure was extremely time-consuming and the results demonstrated a high degree of size variation. In Chapter 3, we have developed characterization tools that provide checkpoints for each step of the synthesis. We demonstrated that it is possible to control the degree of coverage on the shell for a fixed amount of reagents, and also showed important differences on the shell growth phase for gold and silver. The synthetic optimization presented in Chapter 3 led to an overall faster protocol than those previously reported. Although the improvements presented in Chapter 3 led to a higher degree of control on the synthesis of nanoshells, the variations in the resulting particle population were still too large for applications in single particle spectroscopy and imaging. In Chapter 4, the synthesis was completely reformulated, aiming to narrow the size distribution of the nanoshell colloids. Through the use of a reverse microemulsion, we were able to fabricate ultramonodisperse silica (SiO2) cores, which translate into nanoshell colloids with narrow extinction bands that are comparable to those of a single nanoshell. We then fabricate a library of colloids with different core sizes, shell thicknesses and composition (gold or silver). The localized surface plasmon resonance (LSPR) of these colloids span across the visible range. From this library, two nanoshells (18nm silver on a 50nm SiO2 core, and 18nm gold on a 72nm SiO2 core) were selected for a proof of principle cell imaging experiment. The silver nanoshells were coated with a nuclear localization signal, allowing it to target the nuclear membrane. The gold nanoshells were coated with an antibody that binds to a receptor on the plasma membrane of MCF-7 human breast cancer cells. The nanoshells were easily distinguishable by eye in a dark field microscope and successful targeting was demonstrated by hyperspectral dark field microscopy. A comparison was made between fluorescent phalloidin and nanoshells, showing the superior photostability of the nanoparticles for long-term cell imaging. The results from Chapter 4 suggest that the nanoshells obtained by our new synthetic route present acceptable particle-to-particle variations in their optical properties that enables single particle extinction spectroscopy for cell imaging. In Chapter 5 we explored the use of these nanoshells for single-particle Surface-enhanced Raman spectroscopy (SERS). Notice that particle-to-particle variations in SERS are expected to be more significant than in extinction spectroscopy. This is because particle-to-particle SERS variabilities are driven by subtle changes in geometric parameters (particle size, shape, roughness). Two types of gold nanoshells were prepared and different excitation wavelengths (λex) were evaluated, respective to the LSPR of the nanoshells. Individual scattering spectra were acquired for each particle, for a total of 163 nanoshells, at two laser excitation wavelengths (632.8 nm and 785 nm). The particle-to-particle variations in SERS intensity were evaluated and correlated to the efficiency of the scattering at the LSPR peak. Chapter 6 finally shows the application of gold nanoshells as a platform for the direct visualization of circulating tumor cells (CTCs). 4T1 breast cancer cells were transduced with a non-native target protein (Thy1.1) and an anti-Thy1.1 antibody was conjugated to gold nanoshells. The use of a transduced target creates the ideal scenario for the assessment of nonspecific binding. On the in vitro phase of the study, non-transduced cells were used as a negative control. In this phase, parameters such as incubation times and nanoshell concentration were established. A murine model was then developed with the transduced 4T1 cells for the ex vivo portion of the work. Non-transduced cells were implanted in a control group. Blood was drawn from mice in both groups over the course of 29 days. Antibody-conjugated nanoshells were incubated with the blood samples and detection of single CTCs was achieved in a dark field microscope. Low levels of nonspecific binding were observed in the control group for non-transduced cells and across different cell types normally found in peripheral blood (e.g. lymphocytes). All positive and negative subjects were successfully identified. Chapter 7 provides an outlook of the work presented here and elaborates on possible directions to further develop the use of nanoshells in bioapplications and spectroscopy. / Graduate / 2019-05-03

Page generated in 0.0548 seconds