• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 672
  • 107
  • 73
  • 63
  • 27
  • 25
  • 20
  • 14
  • 9
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1287
  • 256
  • 219
  • 179
  • 172
  • 152
  • 144
  • 130
  • 118
  • 103
  • 89
  • 87
  • 86
  • 85
  • 75
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Mechanical support design of analyzer for a diffraction enhanced x-ray imaging (DEI) system

Alagarsamy, Nagarajan 18 May 2007
Diffraction Enhanced X-ray Imaging (DEI) uses synchrotron X-ray beams prepared and analyzed by perfect single crystals to achieve imaging contrast from a number of phenomena taking place in an object under investigation. The crystals used in DEI for imaging requires high precision positioning due to a narrow rocking curve. Typically, the angular precision required should be on the order of tens of nanoradians.<p>One of the problems associated with DEI is the inability to control, set, and fix the angle of the analyzer crystal in relation to the beam exiting the monochromator in the system. This angle is used to interpret the images acquired with an object present and the usual approach is to determine where the image was taken after the fact. If the angle is not correct, then the image is wasted and has to be retaken. If time or dose is not an issue, then retaking the image is not a serious problem. However, since the technique is to be developed for live animal or eventually human imaging, the lost images are no longer acceptable from either X-ray exposure or time perspectives.<p>Therefore, a mechanical positioning system for the DEI system should be developed that allows a precise setting and measurement of the analyzer crystal angles. In this thesis, the fundamental principles of the DEI method, the DEI system at the National Synchrotron Light Source (NSLS) and the sensitivity of the DEI system to vibration and temperature has been briefly studied to gain a better understanding of the problem. The DEI design at the NSLS was analyzed using finite element analysis software (ANSYS) to determine the defects in the current design which were making the system dimensionally unstable. Using the results of this analysis, the new analyzer support was designed aiming to eliminate the problems with the current design. The new design is much stiffer with the natural frequency spectrum raised about eight times. <p> This new design will improve the performance of the system at the National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory, New York, USA and should assist in the development of a new DEI system for the Bio-Medical Imaging and Therapy (BMIT) beamline at the Canadian Light Source (CLS), Saskatoon, CANADA.
342

Microfluidic Analysis for Carbon Management

Sell, Andrew 28 November 2012 (has links)
This thesis focuses on applying microfluidic techniques to analyze two carbon management methods; underground carbon sequestration and enhanced oil recovery. The small scale nature of microfluidic methods enables direct visualization of relevant pore-scale phenomena, enabling elucidation of parameters such as diffusion coefficients and critical compositions. In this work, a microfluidic platform was developed to control a two-phase carbon dioxide (CO2)-water interface for diffusive quantification with fluorescent techniques. It was found that the diffusion coefficient of CO2 in pure water was constant (1.86 [± 0.26] x10-9 m2/s) over a range of pressures. The effects of salinity on diffusivity were also measured in solutions, it was found that the diffusion coefficient varied up to 3 times. A microfluidic technique able to determine the critical composition of a model ternary mixture was also successfully implemented. Results indicate potential application of this approach to minimum miscibility pressure measurements used in enhanced oil recovery.
343

The Utility of Contrast-enhanced Ultrasound in the Assessment of Solid Small Renal Masses

Tabatabaeifar, Leila 19 March 2013 (has links)
Purpose: To compare hemodynamic of malignant and benign SRMs on CT and CEUS. Method: Seventy biopsy proven SRM underwent CEUS. Sixty-three had CT. After injection of 0.2 ml of Definity, 3min and after 0.9 ml infusion, 30 sec of data were acquires. Lesion hemodynamics relative to the cortex was evaluated both qualitatively and quantitatively. Results: Considering 15 and 20 HU as enhancement threshold, 10% to 13% of patients did not enhance on CT, while all lesions enhanced on CEUS. Papillary RCCs showed hypovascularity with 100% specificity. In other RCCs, PI, WI slope 5 to45%, 50 to100%, 10 to 90%, WO slope 100 to 50%, 100 to 10%, WO intensity at peak+30 seconds were statistically higher than benign SRMs. Conclusion: All solid SRMs enhance on CEUS, while CT does not show vascularity in 10-13% of solid SRMs. CEUS can differentiate malignant from benign SRMs by evaluating their hemodynamics.
344

Role of angiostatin in neutrophil biology and acute lung injury

Aulakh, Gurpreet Kaur 22 August 2011
Acute lung injury is marked by profound neutrophil influx along with fluid accumulation that impairs lung function at the cost of high mortality (up to 40%). Neutrophils are activated and their constitutive apoptosis is inhibited during this phase in order to be competent phagocytes over the next few hours. Activated neutrophils release copious amounts of toxic mediators that cause tissue damage leading to impaired barrier function and finally, impaired lung function. Therefore, one of the critical needs is to identify molecules that regulate neutrophil migration and silence activated neutrophils to prevent exuberant tissue damage. Angiostatin is an anti-angiogenic molecule highly expressed in lavage fluid of patients with acute respiratory distress syndrome. Angiostatin has recently been shown to inhibit neutrophil infiltration in mice peritonitis. However, the role of angiostatin in modulating neutrophil physiology and lung inflammation remains unknown. I studied the role of angiostatin, an anti-angiogenic molecule, in neutrophil activation and recruitment <i>in vivo</i> and <i>in vitro</i>. Angiostatin was endocytosed only by activated neutrophils, inhibited neutrophil polarity in fMLP-activated neutrophils probably through integrin &alpha;<sub>V</sub>&beta;<sub>3</sub>, and inhibited MAPK signalling in LPS-activated neutrophils. Angiostatin suppressed formation of reactive oxygen species and activated caspase-3 in neutrophils in both pre-and post-LPS treatments. Finally, angiostatin reduced adhesion and emigration of neutrophils in post-capillary venules of TNF&alpha;-treated cremaster muscle. The next study was designed to investigate the role of angiostatin in acute lung injury. I used <i>E. coli</i> lipopolysaccharide induced acute lung injury mouse model to test the effects of angiostatin through analyses of bronchoalveolar lavage and lung tissues. In addition, I made novel use of synchrotron diffraction enhanced imaging of mouse lungs to assess lung area and contrast ratios over 9 hours as surrogates for lung inflammation. Subcutaneous treatment with angiostatin reduced neutrophil influx, protein accumulation, lung Gr1+ neutrophils and myeloperoxidase activity, phosphorylated p38 MAPK without affecting the levels of MIP-1&alpha;, IL-1&beta;, KC and MCP-1 in lavage and lung homogenates. Diffraction enhanced imaging showed that angiostatin causes a time-dependent improvement in lung area and lung contrast ratios that reflect improvement in lung edema. Overall, the study shows that angiostatin is a novel inhibitor of acute lung injury in mice. Moreover, DEI offers a highly useful technique in evaluating dynamics of lung inflammation and to investigate the therapeutic impact of new drugs on lung inflammation. I conclude that angiostatin is a novel inhibitor of neutrophil migration, activation and acute lung injury.
345

A dual-mode Q-enhanced RF front-end filter for 5 GHz WLAN and UWB with NB interference rejection

Pham, Bi Ngoc 20 December 2007
The 5 GHz Wireless LAN (802.11a) is a popular standard for wireless indoor communications providing moderate range and speed. Combined with the emerging ultra Wideband standard (UWB) for short range and high speed communications, the two standards promise to fulfil all areas of wireless application needs. However, due to the overlapping of the two spectrums, the stronger 802.11a signals tend to interfere causing degradation to the UWB receiver. This presents one of the main technical challenges preventing the wide acceptance of UWB. The research work presented in this thesis is to propose a low cost RF receiver front-end filter topology that would resolve the narrowband (NB) interference to UWB receiver while being operable in both 802.11a mode and UWB mode. The goal of the dual mode filter design is to reduce cost and complexity by developing a fully integrated front-end filter. The filter design utilizes high Q passive devices and Q-enhancement technique to provide front-end channel-selection in NB mode and NB interference rejection in UWB mode. In the 802.11a NB mode, the filter has a tunable gain of 4 dB to 25 dB, NF of 8 dB and an IIP3 between -47 dBm and -18 dBm. The input impedance is matched at -16 dB. The frequency of operation can be tuned from 5.15 GHz to 5.35 GHz. In the UWB mode, the filter has a gain of 0 dB to 8 dB across 3.1 GHz to 9 GHz. The filter can reject the NB interference between 5.15 GHz to 5.35 GHz at up to 60 dB. The Q of the filter is tunable up to a 250 while consuming a maximum of 23.4 mW of power. The fully integrated dual mode filter occupies a die area of 1.1 mm2.
346

A data-assisted approach to supporting instructional interventions in technology enhanced learning environments

2012 December 1900 (has links)
The design of intelligent learning environments requires significant up-front resources and expertise. These environments generally maintain complex and comprehensive knowledge bases describing pedagogical approaches, learner traits, and content models. This has limited the influence of these technologies in higher education, which instead largely uses learning content management systems in order to deliver non-classroom instruction to learners. This dissertation puts forth a data-assisted approach to embedding intelligence within learning environments. In this approach, instructional experts are provided with summaries of the activities of learners who interact with technology enhanced learning tools. These experts, which may include instructors, instructional designers, educational technologists, and others, use this data to gain insight into the activities of their learners. These insights lead experts to form instructional interventions which can be used to enhance the learning experience. The novel aspect of this approach is that the actions of the intelligent learning environment are now not just those of the learners and software constructs, but also those of the educational experts who may be supporting the learning process. The kinds of insights and interventions that come from application of the data-assisted approach vary with the domain being taught, the epistemology and pedagogical techniques being employed, and the particulars of the cohort being instructed. In this dissertation, three investigations using the data-assisted approach are described. The first of these demonstrates the effects of making available to instructors novel sociogram-based visualizations of online asynchronous discourse. By making instructors aware of the discussion habits of both themselves and learners, the instructors are better able to measure the effect of their teaching practice. This enables them to change their activities in response to the social networks that form between their learners, allowing them to react to deficiencies in the learning environment. Through these visualizations it is demonstrated that instructors can effectively change their pedagogy based on seeing data of their students’ interactions. The second investigation described in this dissertation is the application of unsupervised machine learning to the viewing habits of learners using lecture capture facilities. By clustering learners into groups based on behaviour and correlating groups with academic outcome, a model of positive learning activity can be described. This is particularly useful for instructional designers who are evaluating the role of learning technologies in programs as it contextualizes how technologies enable success in learners. Through this investigation it is demonstrated that the viewership data of learners can be used to assist designers in building higher level models of learning that can be used for evaluating the use of specific tools in blended learning situations. Finally, the results of applying supervised machine learning to the indexing of lecture video is described. Usage data collected from software is increasingly being used by software engineers to make technologies that are more customizable and adaptable. In this dissertation, it is demonstrated that supervised machine learning can provide human-like indexing of lecture videos that is more accurate than current techniques. Further, these indices can be customized for groups of learners, increasing the level of personalization in the learning environment. This investigation demonstrates that the data-assisted approach can also be used by application developers who are building software features for personalization into intelligent learning environments. Through this work, it is shown that a data-assisted approach to supporting instructional interventions in technology enhanced learning environments is both possible and can positively impact the teaching and learning process. By making available to instructional experts the online activities of learners, experts can better understand and react to patterns of use that develop, making for a more effective and personalized learning environment. This approach differs from traditional methods of building intelligent learning environments, which apply learning theories a priori to instructional design, and do not leverage the in situ data collected about learners.
347

Application of Polymer Gels as Conformance Control Agents for Carbon Dioxide for Floods in Carbonate Reservoirs

Al Ali, Ali 1986- 14 March 2013 (has links)
With the production from mature oil fields declining, the increasing demand of oil urges towards more effective recovery of the available resources. Currently, the CO2 Floods are the second most applied EOR processes in the world behind steam injection. With more than 30 years of experience gained from CO2 flooding, successful projects have showed incremental oil recovery ranging from 7 to 15 % of the oil initially in place. Despite all of the anticipated success of CO2 floods, its viscosity nature is in heterogeneous and naturally fractured reservoirs is challenging; CO2 will flow preferentially through the easiest paths resulting in early breakthrough and extraction ineffectiveness leaving zones of oil intact. This research aims at investigating gel treatments and viscosified water-alternating-gas CO2 mobility control techniques. A set of experiments have been conducted to verify the effectiveness and practicality of the proposed mobility control approaches. Our research employed an imaging technique integrating an X-Ray CT scanner with a CT friendly aluminum coreflood cell. With the integrated systems, we were able to obtain real time images when processed provide qualitative and qualitative evaluations to the coreflood. The research studies included preliminary studies of CO2 and water injection performance in fractured and unfractured cores. These experiments provided a base performance to which the performances of the mobility control attempts were compared. We have applied the same methodology in evaluation of the experimental results to both conformance control gel treatments and viscosified water-alternating-gas CO2 mobility control. The gel conformance control studies showed encouraging results in minimizing the effect of heterogeneities directing the injected CO2 to extract more oil from the low permeability zones; the gel strength was evaluated in terms of breakdown and leakoff utilizing the production data aided with CT imaging analysis. The viscosified water coupled with CO2 investigations showed great promising results proving the superiority over neat CO2 injection. This research serves as a preliminary understanding to the applicability of tested mobility control approaches providing a base to future studies in this category of research.
348

Effect of different carbon sources and continuous aerobic conditions on the EBPR process

Pijuan Vilalta, Maite 05 October 2004 (has links)
No description available.
349

Optimization of ultrafiltration membrane cleaning processes. Pretreatment for reverse osmosis in seawater desalination plants

Gilabert Oriol, Guillem 05 March 2013 (has links)
Esta tesis explica com mejorar la eficiencia del proceso de ultrafiltración en la desalinización de agua de mar. Esto se consigue optimizando diferentes procesos de limpieza como los contralavados y las limpiezas químicas mejoradas. Para conseguirlo se siguen diferentes estrategias como reducir el número de pasos de los contralavados, reducir la frecuencia de los contralavados, usar salmorra proveniente del concentrado de osmosis y reducir el consumo de químicos. Se propone una nueva metodología para analizar los ciclos de limpieza mediante la modelización del proceso. Diferentes tipos de fibra son analizados mediante su permeabilidad y tolerancia a la suciedad. Se presenta una nueva metodología para prevenir la cloración de las membranas de osmosis inversa causadas por las limpiezas químicas mejoradas que se llevan a cabo aguas arriba. Todos los descubrimientos son validados con datos obtenidos de plantas reales. Estas mejoras aumentan la eficiencia del proceso hasta al 98% y reducen el coste de operación de la ultrafiltración en un 7%. / This thesis gives an overview on how to improve efficiency of the ultrafiltration filtration process in seawater desalination. This is achieved by optimizing different cleaning processes such as the backwash and the chemical enhanced backwash. Key success factors rely on reducing the number of backwash steps, improving the backwash frequency, using reverse osmosis brine for backwashing and reducing the chemical consumption. A new methodology to analyze these cleanings cycles is proposed through modeling the process. Different fibers types are also analyzed according to its permeability and its fouling tolerance. A methodology to prevent reverse osmosis chlorination from upstream chemical enhanced backwash cleaning is presented. All the findings are validated through real plant operating data. The proposed improvements increase the process efficiency to 98% and lead to a 7% cost reduction in the ultrafiltration process.
350

Study of Foam Mobility Control in Surfactant Enhanced Oil Recovery Processes in One-Dimensional, Heterogeneous Two-Dimensional, and Micro Model Systems

January 2011 (has links)
The focus of this thesis was conducting experiments which would help in understanding mechanisms and in design of surfactant enhanced oil recovery (EOR) processes in various scenarios close to reservoir conditions such as heterogeneity, effects of crude oil, wettability, etc. Foam generated in situ by surfactant alternating gas injection was demonstrated as a substitute for polymer drive in a 1-D FOR process. It was effective in a similar process for a 266 cp crude oil even though the system did not have favorable mobility control. Foam enhanced sweep efficiency in a layered sandpack with a 19:1 permeability ratio. Foam diverted surfactant from the high- to the low-permeability layer. Ahead of the foam front, liquid in the low-permeability layer crossflowed into the high-permeability layer. Foam completely swept the system in 1.3 TPV (total pore volume) fluid injection while waterflood required 8 TPV. When the same 2-D system was oil-wet, the recovery by watertlood was only 49.1% of original oil-in-place (OOIP) due to injected water flowing through high-permeability zone leaving low-permeability zone unswept. To improve recovery, an anionic surfactant blend (NI) was injected that altered the wettability and lowered the interfacial tension (IFT) and consequently enabled gravity and capillary pressure driven vertical counter-current flow to occur and exchange fluids between layers during a 42-day system shut-in. Cumulative recovery after a subsequent foamflood was 94.6% OOIP. The addition of lauryl betaine to NI at a weight ratio of 2:1 made the new NIB a good IFT-reducing and foaming agent with crude oil present. It showed effectiveness in water-wet homogeneous and oil-wet heterogeneous sandpacks. The unique attribute of foam with higher apparent viscosity in high- than in low-permeability regions makes it a better mobility control agent than polymer in heterogeneous systems. One single surfactant formulation such as NIB in this study that can simultaneously reduce IFT and generate foam will improve the microscopic displacement and sweep efficiency from the beginning of a chemical flooding process. Foam generation mechanisms, alkaline/surfactant processes, and foam stability in presence of crude oil were investigated in a glass micro model. Total acid number measurement with spiking method was discussed.

Page generated in 0.0428 seconds