• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conservation by Consensus: Reducing Uncertainty from Methodological Choices in Conservation-based Models

Poos, Mark S. 01 September 2010 (has links)
Modeling species of conservation concern, such as those that are rare, declining, or have a conservation designation (e.g. endangered or threatened), remains an activity filled with uncertainty. Species that are of conservation concern often are found infrequently, in small sample sizes and spatially fragmented distributions, thereby making accurate enumeration difficult and traditional statistical approaches often invalid. For example, there are numerous debates in the ecological literature regarding methodological choices in conservation-based models, such as how to measure functional traits to account for ecosystem function, the impact of including rare species in biological assessments and whether species-specific dispersal can be measured using distance based functions. This thesis attempts to address issues in methodological choices in conservation-based models in two ways. In the first section of the thesis, the impacts of methodological choices on conservation-based models are examined across a broad selection of available approaches, from: measuring functional diversity; to conducting bio-assessments in community ecology; to assessing dispersal in metapopulation analyses. It is the goal of this section to establish the potential for methodological choices to impact conservation-based models, regardless of the scale, study-system or species involved. In the second section of this thesis, the use of consensus methods is developed as a potential tool for reducing uncertainty with methodological choices in conservation-based models. Two separate applications of consensus methods are highlighted, including how consensus methods can reduce uncertainty from choosing a modeling type or to identify when methodological choices may be a problem.
2

Conservation by Consensus: Reducing Uncertainty from Methodological Choices in Conservation-based Models

Poos, Mark S. 01 September 2010 (has links)
Modeling species of conservation concern, such as those that are rare, declining, or have a conservation designation (e.g. endangered or threatened), remains an activity filled with uncertainty. Species that are of conservation concern often are found infrequently, in small sample sizes and spatially fragmented distributions, thereby making accurate enumeration difficult and traditional statistical approaches often invalid. For example, there are numerous debates in the ecological literature regarding methodological choices in conservation-based models, such as how to measure functional traits to account for ecosystem function, the impact of including rare species in biological assessments and whether species-specific dispersal can be measured using distance based functions. This thesis attempts to address issues in methodological choices in conservation-based models in two ways. In the first section of the thesis, the impacts of methodological choices on conservation-based models are examined across a broad selection of available approaches, from: measuring functional diversity; to conducting bio-assessments in community ecology; to assessing dispersal in metapopulation analyses. It is the goal of this section to establish the potential for methodological choices to impact conservation-based models, regardless of the scale, study-system or species involved. In the second section of this thesis, the use of consensus methods is developed as a potential tool for reducing uncertainty with methodological choices in conservation-based models. Two separate applications of consensus methods are highlighted, including how consensus methods can reduce uncertainty from choosing a modeling type or to identify when methodological choices may be a problem.
3

Deep Learning for Spatiotemporal Nowcasting

Franch, Gabriele 08 March 2021 (has links)
Nowcasting – short-term forecasting using current observations – is a key challenge that human activities have to face on a daily basis. We heavily rely on short-term meteorological predictions in domains such as aviation, agriculture, mobility, and energy production. One of the most important and challenging task for meteorology is the nowcasting of extreme events, whose anticipation is highly needed to mitigate risk in terms of social or economic costs and human safety. The goal of this thesis is to contribute with new machine learning methods to improve the spatio-temporal precision of nowcasting of extreme precipitation events. This work relies on recent advances in deep learning for nowcasting, adding methods targeted at improving nowcasting using ensembles and trained on novel original data resources. Indeed, the new curated multi-year radar scan dataset (TAASRAD19) is introduced that contains more than 350.000 labelled precipitation records over 10 years, to provide a baseline benchmark, and foster reproducibility of machine learning modeling. A TrajGRU model is applied to TAASRAD19, and implemented in an operational prototype. The thesis also introduces a novel method for fast analog search based on manifold learning: the tool leverages the entire dataset history in less than 5 seconds and demonstrates the feasibility of predictive ensembles. In the final part of the thesis, the new deep learning architecture ConvSG based on stacked generalization is presented, introducing novel concepts for deep learning in precipitation nowcasting: ConvSG is specifically designed to improve predictions of extreme precipitation regimes over published methods, and shows a 117% skill improvement on extreme rain regimes over a single member. Moreover, ConvSG shows superior or equal skills compared to Lagrangian Extrapolation models for all rain rates, achieving a 49% average improvement in predictive skill over extrapolation on the higher precipitation regimes.
4

Ensemble multi-label learning in supervised and semi-supervised settings / Apprentissage multi-label ensembliste dans le context supervisé et semi-supervisé

Gharroudi, Ouadie 21 December 2017 (has links)
L'apprentissage multi-label est un problème d'apprentissage supervisé où chaque instance peut être associée à plusieurs labels cibles simultanément. Il est omniprésent dans l'apprentissage automatique et apparaît naturellement dans de nombreuses applications du monde réel telles que la classification de documents, l'étiquetage automatique de musique et l'annotation d'images. Nous discutons d'abord pourquoi les algorithmes multi-label de l'etat-de-l'art utilisant un comité de modèle souffrent de certains inconvénients pratiques. Nous proposons ensuite une nouvelle stratégie pour construire et agréger les modèles ensemblistes multi-label basés sur k-labels. Nous analysons ensuite en profondeur l'effet de l'étape d'agrégation au sein des approches ensemblistes multi-label et étudions comment cette agrégation influece les performances de prédictive du modèle enfocntion de la nature de fonction cout à optimiser. Nous abordons ensuite le problème spécifique de la selection de variables dans le contexte multi-label en se basant sur le paradigme ensembliste. Trois méthodes de sélection de caractéristiques multi-label basées sur le paradigme des forêts aléatoires sont proposées. Ces méthodes diffèrent dans la façon dont elles considèrent la dépendance entre les labels dans le processus de sélection des varibales. Enfin, nous étendons les problèmes de classification et de sélection de variables au cadre d'apprentissage semi-supervisé. Nous proposons une nouvelle approche de sélection de variables multi-label semi-supervisée basée sur le paradigme de l'ensemble. Le modèle proposé associe des principes issues de la co-training en conjonction avec une métrique interne d'évaluation d'importnance des varaibles basée sur les out-of-bag. Testés de manière satisfaisante sur plusieurs données de référence, les approches développées dans cette thèse sont prometteuses pour une variété d'ap-plications dans l'apprentissage multi-label supervisé et semi-supervisé. Testés de manière satisfaisante sur plusieurs jeux de données de référence, les approches développées dans cette thèse affichent des résultats prometteurs pour une variété domaine d'applications de l'apprentissage multi-label supervisé et semi-supervisé / Multi-label learning is a specific supervised learning problem where each instance can be associated with multiple target labels simultaneously. Multi-label learning is ubiquitous in machine learning and arises naturally in many real-world applications such as document classification, automatic music tagging and image annotation. In this thesis, we formulate the multi-label learning as an ensemble learning problem in order to provide satisfactory solutions for both the multi-label classification and the feature selection tasks, while being consistent with respect to any type of objective loss function. We first discuss why the state-of-the art single multi-label algorithms using an effective committee of multi-label models suffer from certain practical drawbacks. We then propose a novel strategy to build and aggregate k-labelsets based committee in the context of ensemble multi-label classification. We then analyze the effect of the aggregation step within ensemble multi-label approaches in depth and investigate how this aggregation impacts the prediction performances with respect to the objective multi-label loss metric. We then address the specific problem of identifying relevant subsets of features - among potentially irrelevant and redundant features - in the multi-label context based on the ensemble paradigm. Three wrapper multi-label feature selection methods based on the Random Forest paradigm are proposed. These methods differ in the way they consider label dependence within the feature selection process. Finally, we extend the multi-label classification and feature selection problems to the semi-supervised setting and consider the situation where only few labelled instances are available. We propose a new semi-supervised multi-label feature selection approach based on the ensemble paradigm. The proposed model combines ideas from co-training and multi-label k-labelsets committee construction in tandem with an inner out-of-bag label feature importance evaluation. Satisfactorily tested on several benchmark data, the approaches developed in this thesis show promise for a variety of applications in supervised and semi-supervised multi-label learning
5

Strategies for Combining Tree-Based Ensemble Models

Zhang, Yi 01 January 2017 (has links)
Ensemble models have proved effective in a variety of classification tasks. These models combine the predictions of several base models to achieve higher out-of-sample classification accuracy than the base models. Base models are typically trained using different subsets of training examples and input features. Ensemble classifiers are particularly effective when their constituent base models are diverse in terms of their prediction accuracy in different regions of the feature space. This dissertation investigated methods for combining ensemble models, treating them as base models. The goal is to develop a strategy for combining ensemble classifiers that results in higher classification accuracy than the constituent ensemble models. Three of the best performing tree-based ensemble methods – random forest, extremely randomized tree, and eXtreme gradient boosting model – were used to generate a set of base models. Outputs from classifiers generated by these methods were then combined to create an ensemble classifier. This dissertation systematically investigated methods for (1) selecting a set of diverse base models, and (2) combining the selected base models. The methods were evaluated using public domain data sets which have been extensively used for benchmarking classification models. The research established that applying random forest as the final ensemble method to integrate selected base models and factor scores of multiple correspondence analysis turned out to be the best ensemble approach.

Page generated in 0.1359 seconds