• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Resultados do tipo Calabi-Bernstein em −R × Hn. / Calabi-Bernstein type results in -R × Hn.

LIMA JÚNIOR, Eraldo Almeida. 25 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-25T19:25:58Z No. of bitstreams: 1 ERALDO ALMEIDA LIMA JÚNIOR - DISSERTAÇÃO PPGMAT 2011..pdf: 415901 bytes, checksum: 427abfdae7c5a546735d4a6b14f72bfe (MD5) / Made available in DSpace on 2018-07-25T19:25:58Z (GMT). No. of bitstreams: 1 ERALDO ALMEIDA LIMA JÚNIOR - DISSERTAÇÃO PPGMAT 2011..pdf: 415901 bytes, checksum: 427abfdae7c5a546735d4a6b14f72bfe (MD5) Previous issue date: 2011-07 / Neste trabalho, apresentamos um estudo das hipersuperfícies tipo-espaço imersas no ambiente −R × Hn, exibindo condições para que tais hipersuperfícies sejam slices {t0}×Hn. Para uma melhor compreensão das demonstrações e dos resultados, inserimos processos de diferenciação, cálculos de gradientes e Laplacianos que, juntamente com o princípio do máximo de Omori-Yau, foram cruciais no desenvolvimento dos resultados que, em sua maioria são do tipo Bernstein. Também incluímos um resultado do tipo Calabi. / In this work we present a study of the spacelike hypersurfaces immersed in the manifold −R × Hn providing sufficient conditions for such hypersurfaces be slices, {t0}×Hn. For a better understanding of the proofs and results, we have added differentiation processes, gradient computations and Laplacians which jointly with the Omori-Yau Maximum Principle were crucial in the developing of the results whose are mostly Bernstein-type. In the elapsing we also included Calabi-type results.

Page generated in 0.0597 seconds