• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 5
  • 1
  • Tagged with
  • 16
  • 16
  • 13
  • 13
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude des interactions protéine-protéine à l'enveloppe nucléaire / Protein-protein interactions study at the nuclear envelope

Herrada, Isaline 07 October 2015 (has links)
Plusieurs publications, parues lors de ma thèse, ont révélé que les protéines de la membrane nucléaireinterne (INM) et plus particulièrement l’émerine, la lamine A, SUN1, l’actine et BAF, jouaient un rôleessentiel dans les propriétés mécaniques du noyau et de la cellule. L’assemblage de l’enveloppenucléaire et les interactions de ces protéines entre-elles sont régulées par des évènements dephosphorylation et d’oligomérisation. Mon objectif était de décrire les évènements moléculairesessentiels à l’assemblage de l’enveloppe nucléaire interne, afin de pouvoir par la suite comprendrecomment l’enveloppe nucléaire répond à un stress mécanique.J’ai dans un premier temps caractérisé les évènements d’oligomérisation et de phosphorylation de laprotéine émerine. J’ai montré que cette protéine était capable de former, in vitro et en cellules, de grosoligomères indispensables à son interaction avec la lamine A. J’ai également observé que desmutations dans l’émerine, aboutissant à la dystrophie musculaire d’Emery-Dreifuss, affectaient lespropriétés d’auto-association de cette protéine.En parallèle, j’ai étudié les interactions entre émerine, lamine, SUN1, actine et BAF in vitro. J’ai pumontrer des interactions directes entre le domaine C-terminal de la lamine A et les protéines émerine,actine et SUN1. Ces trois protéines lient la lamine A sur des surfaces différentes suggérant l’existencede complexes à 3 ou 4 protéines dans la cellule. L’analyse des modes de régulation des interactionsentre ces protéines doit être poursuivie afin de comprendre quels sont les évènements moléculairesessentiels au maintien de l'intégrité nucléaire et à la transmission d’un signal mécanique entre lecytosquelette et le nucléosquelette. / During my PhD, several papers revealed that the inner nuclear membrane (INM) proteins, andespecially emerin, lamin A, SUN1, actin and BAF, played an essential role in the mechanicalproperties of the nucleus and the cell. The nuclear envelope assembly and the interactions betweenthese proteins are regulated by phosphorylation and oligomerization events. My aim was to describemolecular events essential for inner nuclear envelope assembly as a first step to understand how thenuclear envelope responds to a mechanical stress.I first characterized the oligomerization and phosphorylation states of the protein emerin. I showedthat this protein is capable of forming, in vitro and in cells, large oligomers essential to its interactionwith lamin A. I also observed that several emerin mutations leading to Emery-Dreifuss musculardystrophy impaired the self-association properties of this protein.In parallel, I studied the interactions between emerin, lamin, SUN1, actin and BAF in vitro. I was ableto demonstrate direct interactions between the C-terminal domain of lamin A and the proteins emerin,actin and SUN1. These three proteins bind lamin A on different surfaces suggesting the existence ofcomplexes of 3 or 4 proteins in the cell. Analysis of the mechanisms regulating interactions betweenthese proteins should be pursued in order to understand what are the molecular events responsible forthe maintenance of nuclear integrity and the transmission of a mechanical signal between thecytoskeleton and the nucleoskeleton.
2

Étude des GTPases potentiellement responsables de la fusion du réticulum endoplasmique

Thibault, Geneviève January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
3

Emery-Dreifuss muscular dystrophy-associated FHL1 gene mutations : study of molecular and functional consequences in skeletal muscle / Mutations du gène FHL1 conduisant à la dystrophie musculaire d'Emery-Dreifuss : étude des conséquences moléculaires et fonctionnelles au niveau des muscles squelettiques

Ziat, Esma 14 October 2015 (has links)
La dystrophie musculaire d'Emery-Dreifuss (EDMD) est caractérisée par des retractions précoces, une faiblesse et atrophie musculaire lentement progressive, et une atteinte cardiaque. Les mutations des gènes EMD et LMNA sont respectivement responsables de formes liées à l'X et de formes autosomiques de l'EDMD. Ces deux gènes codent pour des protéines de l'enveloppe nucléaire, l'émerine et les lamines A/C. Les mutations du gène FHL1 ont été impliquées dans d'autres cas d'EDMD liée à l'X. FHL1 codent pour FHL1A, FHL1B et FHL1C, protéines jamais décrites comme localisées à l'enveloppe nucléaire. Nous avons cherché à enrichir les connaissances sur la distribution subcellulaire des différentes isoformes de FHL1 dans les muscles squelettiques humains sains et malades. Nous avons mis en évidence que les isoformes FHL1 présentent à la fois une localisation cytoplasmique et nucléaire dans les myoblastes humains. Au noyau, FHL1B est fortement accumulé au niveau de l'enveloppe nucléaire où il interagit avec les lamines A/C et l'émerine. Cette localisation à l'enveloppe nucléaire est indépendante de l'expression de l'émerine ou des lamines A/C. La différenciation des myoblastes entraîne une forte réduction de l'expression de FHL1B et de son exclusion progressive du noyau, n'impliquant pas la protéine CRM-1. Nous avons mis en évidence l'augmentation de l'expression de FHL1B dans les myoblastes de deux patients atteints d'EDMD, l'un porteur d'une mutation dans le gène LMNA, l'autre dans le gène FHL1. En conclusion, la localisation spécifique de FHL1B et sa modulation dans les myoblastes de patients confirment les cas d'EDMD liés à FHL1 comme des pathologies de l'enveloppe nucléaire. / Emery-Dreifuss muscular dystrophy (EDMD) is characterized by the triad of early contractures, slowly progressive muscle wasting and weakness, and cardiac disease. Mutations in EMD and LMNA, encoding for the nuclear envelope (NE) proteins emerin and lamin A/C, are associated with X-linked and autosomal form of EDMD, respectively. The discovery that FHL, encoding FHL1A, FHL1B and FHL1C, is implicated in the pathogenesis of EDMD, raises the question of how a non-NE protein can be linked to emerin and lamin A/C. We aimed to provide knowledge of the subcellular distribution and expression of the various FHL1 isoforms in healthy and diseased human skeletal muscle. We found that FHL1 isoforms display a dual cytoplasmic and nuclear localization in human myoblasts. In addition, FHL1B strongly accumulated at the NE where it interacted with both lamin A/C and emerin. NE localization of FHL1B was independent of emerin and lamin A/C expression. Myoblast differentiation resulted in greatly reduced FHL1B protein expression and in the progressive nuclear exclusion of FHL1 protein isoforms. We have shown that chromosome region maintenance 1 (CRM1)-mediated nuclear export was not involved in the progressive decrease of nucleoplasmic FHL1B. Finally, we detected increased FHL1B protein levels in myoblasts of two patients with LMNA- and FHL1-related EDMD. Altogether, the specific localization of FHL1B and its modulation in disease-patient’s myoblasts confirmed FHL1-related EDMD as a NE disease.
4

Analyse structurale des régions prédites comme dépliées de l’enveloppe nucléaire : exemple de l’émerine et de la lamine A. / Structural analysis of regions predicted as unfolded at the nuclear envelope : example of emerin and lamin A.

Celli, Florian 23 November 2018 (has links)
Les lamines sont le principal composant du nucléosquelette. Elles sont principalement localisées à l’enveloppe nucléaire, où elles interagissent avec la membrane nucléaire interne, les protéines associées à la chromatine ainsi qu’avec des modulateurs de la signalisation cellulaire. Le gène LMNA code pour la prélamine A et la lamine C. La région C-terminale de la prélamine A est prédite pour être désordonnée et est la cible de plusieurs événements de maturation. En effet, la protéine est farnésylée, coupée, carboxyméthylée, puis coupée à nouveau ; perdant finalement son groupement farnésyl. Un mutant de cette protéine, dont 50 acides aminés sont manquants, est responsable du syndrome d’Huchtinson-Gilford, appelé progéria (Eriksson et al., 2003). Chez ce mutant, appelé progérine, le site de coupure finale est absent et la protéine reste constitutivement farnésylée. La lamine A est connue pour interagir avec la protéine de la membrane nucléaire interne, l’émerine. L’absence d’émerine est responsable de la dystrophie musculaire d’Emery Dreifuss. L’émerine contient un LEM, suivi d’une région prédite comme désordonnée, essentielle pour l’auto-assemblage de l’émerine (Berk et al., 2014). L’oligomérisation de l’émerine régule ses interactions avec plusieurs partenaires à la membrane nucléaire interne et à la chromatine. Nous avions auparavant démontré que la région nucléoplasmique de l’émerine peut s’auto-associer pour former des filaments in vitro (Herrada et al., 2015) et nous avons récemment révélé que ces filaments sont capables d’interagir directement avec la queue de la lamine A (Samson et al., 2018). Ici, je me suis intéressé à l’analyse structurale des régions prédites comme désordonnées chez (1) l’émerine (2) la prélamine A. Dans le cas de l’émerine, j’ai analysé la conformation de la région nucléoplasmique d’émerine avant et après auto-assemblage, en travaillant avec l’émerine sauvage et plusieurs mutants entraînant des myopathies. J’ai montré que deux fragments de l’émerine 1-187 et 67-221 peuvent polymériser, tandis que leur région commune 67-187, reste toujours monomérique dans nos conditions (Samson et al., 2018). Nous avons aussi montré que le domaine LEM est au moins partiellement déplié au cours de l’assemblage de la région 1-187. J’ai également attribué les signaux RMN de la région désordonnée 67-170, dans le but d’étudier par la suite l’impact des phosphorylations de cette région sur la structure de l’émerine et sur ses propriétés d’auto-assemblage (Samson et al., 2016). Dans le cas de la lamine A, j’ai étudié la région C-terminale de la prélamine A, prédite comme dépliée et qui est le siège de nombreuses modifications post-traductionnelles. J’ai attribué les signaux RMN du peptide prélamine A ainsi que de son mutant progérine (Celli et al., 2018). J’ai montré que ces deux peptides sont en effet déplés et possèdent une hélice  transitoire très conservée. Je propose cette hélice comme site de liaison pour un partenaire encore non identifié. J’ai également démontré que le peptide prélamine A possède une tendance à s’auto-assembler. Cependant, la prélamine A et le peptide progérine sauvages et farnésylés, n’interagissent pas avec le domaine IgFold de la lamine A ni avec BAF, deux domaines associés avec la progéria. J’ai étudié par la suite les interactions de ces peptides avec deux autres partenaires associés à la progéria : la protéine de la membrane nucléaire interne SUN1 et la protéine associée à la chromatine RBBP4. SUN1 est également intrinsèquement désordonnée et très peu soluble dans nos conditions. Les résultats montrent que le peptide prélamine A ne lie pas RBBP4 mais pourrait avoir besoin de la partie C-terminale qui la précède. Cependant, RBBP4 lie directement le partenaire de la lamine BAF. Sur les bases de ces résultats, je propose une série d’expériences pour identifier les détails moléculaires des interactions entre la queue C-terminale de la lamine A, BAF et RBBP4. / Lamins are the main components of the nucleoskeleton. They are primarily located at the nuclear envelope, where they interact with inner nuclear membrane proteins, chromatin-associated proteins and cell signaling modulators. The LMNA gene codes for prelamin A and lamin C. The C-terminal region of prelamin A is predicted to be unfolded and is the target of several maturation events. Indeed, the protein is farnesylated, cleaved, carboxymethylated and cleaved again; losing eventually its farnesyl group. A mutant of this protein, lacking 50 amino acids, is responsible for the Hutchinson-Gilford Progeria Syndrome (Eriksson et al., Nature 2003). In this mutant, called progerin, the final cleavage site is absent and the protein stays constitutively farnesylated. Lamin A is reported to interact with the inner nuclear membrane protein emerin. Lack of emerin is responsible for Emery Dreifuss Muscular Dystrophy. Emerin contains a folded LEM domain, followed by a region that is predicted to be disordered and is essential for emerin self-assembly (Berk et al., 2014). Emerin oligomerization regulates its interaction with several partners at the inner nuclear membrane and at the chromatin. We previously showed that the nucleoplasmic region of emerin can self-assemble to form curvilinear filaments in vitro (Herrada et al., 2015) and we recently revealed that these filaments are able to directly bind to the lamin A tail (Samson et al., 2018).Here I focused on the structural analysis of regions that are predicted to be unfolded in (1) emerin, (2) prelamin A. In the case of emerin, I analysed the conformation of the nucleoplasmic region of emerin before and after self-assembly, working on wild-type emerin as well as several mutants causing myopathies. I showed that the two fragments of emerin 1-187 and 67-221 were able to self-assemble, whereas their common region, 67-187, is always a monomer in our conditions (Samson et al., 2018). I also revealed that the LEM domain is at least partially unfolded during self-assembly of region 1-187, as a mutant with a destabilized LEM domain self-assembles faster and a mutant with a LEM domain locked in its folded conformation cannot self-assemble (Samson et al., 2017). I also assigned all the NMR signals of the unfolded region 67-170, in order to further study by NMR the impact of phosphorylation of this region on emerin structure and self-assembly properties (Samson et al., 2016). In the case of lamin A, I studied the C-terminal region of prelamin A that is predicted as unfolded and is heavily post-translationally modified. I assigned the NMR signals of this prelamin A peptide as well as its mutant peptide corresponding to the progerin sequence (Celli et al., 2018). I showed that both peptides are indeed unstructured and exhibit a partially populated  helix that has a highly conserved sequence. I propose that this helix is a binding site for a yet unidentified partner. I also revealed that the prelamin A peptide has a tendency to self-assemble. However, the monomeric prelamin A and progerin peptides, wild-type as well as farnesylated, do not interact with the immunoglobulin-like domain of lamin A/C and with BAF, two domains associated with progeria. Then, I investigated the interactions mediated by these peptides and two other important partners associated to progeria: the inner nuclear membrane SUN1 and the chromatin-associated protein RBBP4. However, SUN1 is also intrinsically disordered and poorly soluble in our conditions. First results showed that the prelamin peptide does not bind to RBBP4 but might need the remaining part of the lamin A tail for this interaction. However, RBBP4 directly binds to the lamin partner BAF. Based on my results, I propose a set of experiments to identify the molecular details of the interactions between the lamin A tail, BAF and RBBP4.
5

Mécanotransduction au cours du cycle cellulaire : Rôle de la déformation de l'enveloppe nucléaire / Mechanotransduction during the cell cycle : role of nuclear envelope deformation

Aureille, Julien 19 December 2018 (has links)
La forme du noyau peut varier significativement au cours du développement ou lors de processus pathologiques en raison des forces mécaniques émanant du microenvironnement ou générées par le cytosquelette. L’impact de la morphologie nucléaire sur la machinerie transcriptionnelle n’est cependant pas connu. En utilisant plusieurs approches afin de manipuler la morphologie nucléaire, nous avons observé que des changements de forme de l’enveloppe nucléaire régulent l’activité de AP1 et TEAD. Nous avons montré que l’aplatissement du noyau augmente la phosphorylation de c-Jun et la translocation de YAP, conduisant à une augmentation de la transcription des gènes cibles de AP1 et TEAD. Nous avons également observé que l’aplatissement du noyau se produit au cours du cycle cellulaire et favorise la prolifération via l’activation de TEAD et AP1 qui stimulent la progression de la phase G1 à la phase S. / .The shape of the cell nucleus can vary considerably during developmental and pathological processes as a consequence of the mechanical forces emanating from the microenvironment or generated by the cytoskeleton. However the impact of nuclear morphology on the transcriptional machinery is not known. Using a combination of tools to manipulate the nuclear morphology, we observed that changes in nuclear shape regulate the activity of AP1 and TEAD. We showed that nuclear flattening increases c-Jun phosphorylation and YAP nuclear translocation, leading to transcriptional induction of AP1 and TEAD-target genes. Surprisingly, we found that nuclear compression is necessary and sufficient to mediate c-Jun and YAP activation in response to cell- generated contractility or cell spreading. We additionally observed that nuclear flattening occurs during the cell cycle and promotes proliferation via TEAD and AP1- dependent G1 to S progression.
6

Impact de la surexpression de la lamine B1 sur la réparation des cassures double-chaîne de l’ADN / Impact of lamin B1 overexpression on DNA double-strand break repair

Genet, Diane 26 September 2014 (has links)
De nombreuses études montrent un rôle important de l'architecture du noyau sur la stabilité du génome. Les lamines sont les constituants majeurs de l’enveloppe nucléaire et sont impliquées dans de nombreux processus, notamment, la régulation génique, la réplication et le maintien de la structure du noyau. Il en existe 2 types, les lamines A/C et les lamines B. Certaines mutations des lamines A/C sont à l’origine de syndromes progéroïdes, classés jusqu’à présents en deux catégories : ceux associés à une dérégulation des lamines (laminopathies) et ceux associés à un défaut de réparation de l’ADN, dont l’Ataxie Télangiectasie (A-T). Il est proposé que le vieillissement prématuré observé dans les laminopathies est dû à un défaut de réparation de l’ADN, qui serait alors la voie commune d’induction de sénescence des syndromes progéroïdes. Ceci est appuyé par le fait que de plus en plus de données associent les mutations des lamines A/C à des défauts de réparation de l’ADN. La mise en évidence, par notre laboratoire d’une accumulation de lamine B1 dans A-T et dans deux autres syndromes progéroïdes, pose la question de l’impact de la surexpression de la lamine B1 sur la réparation de l’ADN, d’autant plus que de plus en plus de données associent une augmentation de la lamine B1 à de nombreux cancers, bien que le mécanisme moléculaire ne soit pas connu. Au cours de ma thèse, j’ai donc pu montrer, notamment à l’aide de substrats intra-Chromosomiques, qu’une surexpression de lamine B1 entraînait un défaut de réparation des cassures double-Brin par NHEJ associé à un défaut de recrutement de 53BP1 à la cassure. La mise en évidence d’une interaction entre 53BP1 et la lamine B1, rompue après dommages permet de suggérer un nouveau rôle de la lamine B1 comme réservoir de 53BP1, régulant son recrutement aux cassures. De plus, d’autres résultats suggèrent que la lamine B1 agirait également au niveau de la signalisation du dommage en altérant l’activation d’ATM par un mécanisme qu’il reste à caractériser. L’ensemble de ces résultats montrent un nouveau rôle très important de la lamine B1 dans la signalisation des dommages et la régulation du recrutement des protéines de réparation, ouvrant la voie à une meilleure compréhension de l’implication de la lamine B1 dans la sénescence et le cancer. / Many studies show an important role of nuclear shape on genome stability. Lamins are the major components of the nuclear envelope and are implicated in numerous processes like gene regulation, DNA replication and the maintenance of nuclear structure. There are 2 types of lamins : lamin A/C and lamin B. Some mutations of lamin A/C cause progeroid syndromes, which are classified untill now in two categories : those due to lamins deregulation and those due to DNA repair defects, including Ataxia Telangiectasia (A-T). Accelerated aging observed in laminopathies is proposed to be due to a DNA repair defect, which would be the common pathway leading to senescence in progeroid syndromes. This is supported by many data linking lamin A mutations to DNA repair defects. Our laboratory reported that lamin B1 accumulates in A-T and Fanconi and another study showed also an accumulation in Werner syndrome, which is another progeroïd syndrome. This discovery raises a question about the impact of lamin B1 overexpression on DNA repair, especially as more and more data show an increase of lamin B1 in several cancers, although the molecular mechanism is still unclear. During my thesis, I showed, in particular with intrachromosomal substrates, that lamin B1 overexpression leads to an NHEJ double-Strand break (DSB) repair defect associated with a defect of 53BP1 recruitment to the break. The discovery of an interaction between 53BP1 and lamin B1, which is broken after damage, suggests a new role of lamin B1 as a « reservoir » of 53BP1, regulating its recruitment to the break. In addition, we obtained results suggesting that lamin B1 could also act in the DSB signalisation pathway by affecting ATM activation through a mechanism that we still have to characterize.All together, these datas show a new important role of lamin B1 in DSB signalisation and in the regulation of the recruitment of repair proteins, paving the way to a better understanding of the implication of lamin B1 in senescence and cancer.
7

L'acrosome du spermatozoïde de sa biogenèse à son rôle physiologique / Biogenesis to the physiological role of the sperm acrosome

Pierre, Virginie 07 May 2013 (has links)
Le spermatozoïde est une cellule hautement spécialisée qui doit être capable de réaliser des fonctionsspécifiques pour être capable de féconder un ovocyte. Il doit être capable de réaliser une réactionacrosomique qui consiste en l’exocytose d’une vésicule géante de sécrétion attachée au noyau. Cettevésicule contient des enzymes qui vont permettre au spermatozoïde de traverser la zone pellucide quientoure l’ovocyte. Mon travail a consisté à étudier l’effet d’une des enzymes contenue dansl’acrosome, la sPLA2 de mammifère de groupe X (mGX). C’est la seule phospholipase demammifères parmi les 5 testées qui a un effet d’inhibition sur une population spécifique despermatozoïdes ayant une mobilité diminuée. Mon travail a ainsi confirmé la spécificité de cettephospolipase sur la régulation de la physiologie spermatique. Dans un deuxième temps, j’ai participéà la découverte du gène DPY19L2 impliqué dans une infertilité masculine rare, la globozoospermie.La globozoospermie se caractérise par des spermatozoïdes ayant une tête ronde dépourvued’acrosome. Le gène DPY19L2 est spécifiquement exprimé dans les testicules, il est absent chez80% des patients globozoospermiques. J’ai caractérisé le rôle de cette protéine et montré qu’elle estimpliquée dans l’attachement de l’acrosome au noyau. J’ai pu montrer que cette protéine appartient àla membrane nucléaire interne où elle interagit avec la protéine Sun5, une protéine qui appartientaussi à la membrane nucléaire interne et dont l’expression est spécifique à la spermiogénèse. Sun5est impliquée dans la formation de complexes LINC (Linker of Nucleoskeleton and Cytoskeleton)qui permettent de relier le cytosquelette au nucléosquelette, constitué entre autres par les lamines. Lerôle de DPY19L2 pourrait permettre de stabiliser l’ancrage de la protéine SUN5 afin de transmettreles forces exercées par le cytosquelette au noyau de la spermatide. DPY19L2 appartient à une famillede protéines DPY19L1 à L4 dont les fonctions restent encore peu caractérisées. Une étude récentemontre qu’une diminution de l’expression de Dpy19l1 chez la souris entraîne un défaut de migrationdes neurones glutamatergiques sur la glie radiale. Mon travail a montré l’importance de DPY19L2dans le contrôle des interactions noyau-cytosquelette et devrait permettre de mieux comprendre lerôle des autres protéines de cette famille dans divers organes. / The spermatozoon is a highly specialized cell that must be able to perform specific functions tofertilize the oocyte. It must be able to perform the acrosome reaction, an exocytosis of a giant vesicleof secretion, attached to the nucleus. This vesicle contains enzymes that allow the sperm to penetratethe zona pellucida surrounding the oocyte. The aim of my work was first to study the effect of anenzyme present in the acrosome, the sPLA2 of group X in mouse (mGX). This is the onlymammalian phospholipase among the five tested that has an inhibitory effect on sperm specificpopulation with low mobility. My work has confirmed the specificity of this phospolipase on theregulation of sperm physiology. Second, I participated in the discovery of the gene DPY19L2involved in male infertility, globozoospermia. The globozoospermia is characterized by round headspermatozoa without acrosome. DPY19L2 gene is specifically expressed in the testis and is absent in80% of globozoospermic patients. I then identified the role of this protein, which is involved in theattachment of the acrosome to the nucleus. I showed that this protein belongs to the inner nuclearmembrane where it likely interacts with the protein sun5 which also belongs to the inner nuclearmembrane and whose expression is specific to spermiogenesis. Sun5 is involved in the complexformation, called LINC that connects the cytoskeleton to the nucleoskeleton lamina. The role ofDpy19l2 could help stabilizing the anchoring of protein sun5 in order to transmit the forces exertedby the cytoskeleton to the nucleus of the spermatid during acrosome spreading. Dpy19l2 belongs to aprotein family containing 4 members, Dpy19l1 to l4, which has not been poorly studied so far. Arecent study shows that the knock-down of Dpy19l1 resulted in defective glutamatergics neuronsmigration on the radial glia. The results obtained during my work would improve the knowledge ofCytoskeleton-nucleoskeleton interaction, and give new insight on this new family of proteins.
8

Fonction des protéines de l'enveloppe et de la périphérie nucléaire sur l'organisation du noyau chez Arabidopsis thaliana / Function of envelope and nuclear periphery proteins on the organization of Arabidopsis thaliana nuclei

Voisin, Maxime 07 December 2017 (has links)
Le noyau est une innovation évolutive majeure caractéristique des organismes eucaryotes. Ces dernières années de nombreux travaux se sont intéressés à l’organisation de la chromatine dans l’espace nucléaire lors de l’interphase. Les protéines associées à la périphérie nucléaire ou ancrées dans la membrane nucléaire interne ont suscité un intérêt majeur due à leur contribution dans l’organisation spatiale de la chromatine. Chez les animaux, les lamines qui forment des filaments à la périphérie nucléaire et le complexe LINC, un complexe protéique reliant la membrane externe et interne du noyau sont connues pour interagir avec la chromatine, influencer l’organisation de cette dernière et moduler la régulation transcriptionnelle. Chez la plante modèle Arabidopsis thaliana utilisée dans ce travail, le complexe LINC est conservé, par contre les lamines ne le sont pas et seraient remplacées par d’autres acteurs spécifiques du règne végétal. Le travail détaillé dans ce manuscrit porte sur la mise en évidence d’un nouveau réseau d’interaction protéique localisé à la périphérie nucléaire et sur l’impact de ces protéines dans la morphologie du noyau et l’organisation de la chromatine. Mes travaux se sont concentrés sur les protéines à domaine SUN, l’une des composantes du complexe LINC et sur les protéines CRWN et KAKU4 présentes à la périphérie du noyau. Des cribles double hybride chez la levure m’ont permis d’identifier 24 partenaires protéiques potentiels dont plus d’un tiers sont des facteurs de transcription L’étude plus précise du facteur de transcription MaMYB pour lequel nous avons créé un allèle nul par la méthode CRISPR montre qu’il joue un rôle plus spécifique dans la formation des racines. L’étude de mutants combinatoires pour les gènes SUN, CRWN et KAKU4 montre des anomalies développementales notamment des tissus reproductifs. Enfin, une étude plus détaillée de la protéine KAKU4 suggère sa participation au maintien de la morphologie du noyau et au rapprochement de l’hétérochromatine vers la périphérie nucléaire. En résumé, mes travaux ont mis en évidence l’existence d’un réseau de facteurs de transcription recrutés à la périphérie nucléaire par les protéines SUN, CRWN et KAKU4. Ce réseau d’interaction protéine-protéine participerait à un mécanisme de séquestration de certains facteurs de transcription et/ou d'un rapprochement à la périphérie nucléaire de certains domaines de chromatine afin d’activer ou de réprimer leur transcription. / The nucleus is a major evolutionary innovation characteristic of eukaryotic organisms. In recent years, numerous studies have focused on the organization of chromatin in nuclear space during interphase. Proteins associated with the nuclear periphery or anchored in the inner nuclear membrane have been particularly studied for their contribution to the spatial organization of chromatin. In animals, the lamina that forms filaments at the nuclear periphery and the LINC complex, a protein complex linking the outer and inner membrane of the nucleus, are known to interact with chromatin, to influence its organization and to modulate transcriptional regulation. In the model plant Arabidopsis thaliana used in this work, the LINC complex is conserved, but not the lamina constituents, which are replaced by other specific actors of the plant kingdom. The work detailed in this manuscript identified a new protein interaction network located on the nuclear periphery and studied the impact of these proteins on nuclear morphology and chromatin organization. My work focused on SUN-domain proteins, one of the components of the LINC complex, and on the CRWN and KAKU4 proteins at the periphery of the nucleus. Double hybrid screens in yeast allowed me to identify 24 potential protein partners, more than a third of which are transcription factors. The more precise study of the transcription factor MaMYB for which we created a null allele using the CRISPR method, shows that it plays a more specific role in root formation. The study of mutant combinations for SUN, CRWN and KAKU4 genes reveals developmental abnormalities, particularly in reproductive tissue. Finally, a more detailed study of the role of the KAKU4 protein suggests that it contributes to the morphology of the nucleus in maintaining heterochromatin at the nuclear periphery. In summary, we propose the existence of a transcription factor network recruited to the nuclear periphery by SUN, CRWN and KAKU4 proteins. This protein-protein interaction network would participate in the sequestration of certain transcription factors and/or the localization of certain chromatin domains to the nuclear periphery in order to activate or suppress their transcription.
9

Interaction between telomeres and the nuclear envelope in human cells : dynamics and molecular mechanism / Interaction entre les télomères et la membrane nucléaire dans les cellules humaines : dynamique et mécanisme moléculaire

Kychygina, Ganna 25 September 2019 (has links)
Le matériel génétique contenant l'information des cellules humaines se présente sous forme de chromosomes linéaires dont l'extrémité est protégée par une structure appelée télomères. Les télomères correspondent à une séquence d'ADN répétée, recouverte de protéines spécifiques, qui permettent aux cellules d'étiqueter l'extrémité de leurs chromosomes afin de les différencier des cassures internes de l'ADN nécessitant une réparation. Ainsi, ils jouent un rôle prépondérant dans la protection du génome. Les chromosomes sont organisés et compartimentés dans le noyau de la cellule. Cette organisation est primordiale, la proximité des chromosomes à la membrane nucléaire qui délimite ce noyau est essentielle pour de nombreuses fonctions régulatrices du génome, comme l'activation et la répression des gènes contenant les informations. A chaque division cellulaire, cette organisation est perdue après le désassemblage de la membrane nucléaire et la condensation de la chromatine qui va permettre de correctement répartir les chromosomes entre les cellules filles. Après la division, les noyaux des cellules filles se reforment, la membrane nucléaire est rétablie, et les chromosomes sont repositionnés comme dans la cellule mère. Ce mécanisme de mémoire spatiale est encore inconnu mais est vital au maintien de la stabilité du génome. Une large proportion de télomères sont ancrés à la membrane nucléaire en fin de division, et y restent durant la reformation du noyau. Le laboratoire s'intéresse à cette association afin de caractériser son rôle pendant cette phase clé du cycle cellulaire. Nous cherchons à comprendre ce fonctionnement chez les cellules normales et les cellules de patients atteints de pathologies associées au vieillissement accéléré. Ce projet de thèse à pour but de comprendre l'impact d'une déformation de la membrane nucléaire sur le matériel génétique, et sur l'intégrité des télomères qui protègent l'information génétique. Nous utilisons des techniques de pointe de microscopie, et de biologie cellulaire et moléculaire afin de mieux comprendre le lien entre l'organisation du noyau et le maintien de la stabilité du génome. / The material that contains genetic information of human cells consists in linear chromosomes. The extremities of chromosomes are protected by a specific structure called telomeres. Telomeres are made of repeated DNA sequence, covered by special proteins that prevent cells to recognize extremities of their chromosomes as internal DNA break, thus not to perform unnecessary repair that will result in genome instability. Therefore, telomeres play a major role in genome protection. Chromosomes are spatially organized in the cell nucleus. This organization is important as positioning of chromosomes in the nucleus ensures proper regulatory functions of the genome, such as activation or repression of genes. During the cell division process, this organization is lost after nuclear membrane disassembly and the condensation of DNA, to allow correct segregation of chromosomes between daughter cells. After cell division, the nuclei of daughter cells are reformed, and nuclear membrane is reconstructed. The chromosomes are then relocated as in the mother cell. This mechanism of spatial memory is not well understood yet, but is key to maintain stability of the genome. A large proportion of telomeres are anchored to the nuclear membrane at the end of mitosis, and stay during nuclear envelope reformation. Our laboratory focuses on characterizing the role of telomere anchoring during this important phase of cell cycle. In particular, we want to understand this mechanism in normal cells and cells from patients with premature aging disease. This thesis aims to understand the impact of nuclear envelope abnormalities on the genetic material, in particular on telomere integrity, as telomeres protect genetic information. Here, we use microscopy approaches and techniques of molecular and cellular biology to better understand the link between nuclear organisation and genome stability maintenance.
10

Nuclear architecture and DNA repair : double-strand breaks repair at the nuclear periphery / Architecture nucléaire et réparation de l'ADN : réparation des cassures double brins de l'ADN en périphérie du noyau

Lemaître, Charlène 19 December 2014 (has links)
L'ADN peut être endommagé par des facteurs environnementaux ou intrinsèques au fonctionnement des cellules. Ces facteurs induisent différents types de lésions dont les cassures double brins (CDBs). Les CDBs sont particulièrement dangereuses pour les cellules et une réparation inefficace ou non précise de ces cassures peut entraîner des mutations ou des translocations qui peuvent être à l'origine de cancer. Afin d'éviter l'instabilité génétique que peuvent induire les CDBs, les cellules ont développé deux principaux mécanismes de réparation: la ligature d'extrémités non homologues (NHEJ pour non homologous end joining) et la recombinaison homologue (HR pour homologous recombination). L’utilisation de l’un ou de l’autre de ces mécanismes est finement régulée et une dérégulation de cet équilibre induit une importante instabilité génomique.Tous ces mécanismes ont lieu dans le noyau des cellules qui, chez les mammifères est fortement hétérogène, comportant différents compartiments et des régions où la chromatine est plus ou moins compacte. Cette hétérogénéité implique que la réparation de l’ADN doit pouvoir être efficace dans différents contextes nucléaires. Au cours de ma thèse, j’ai étudié l’influence de l’architecture nucléaire sur le choix des mécanismes de réparation des CDBs. J’ai montré d’une part que la protéine appartenant au pore nucléaire Nup153 influence l’équilibre entre HR et NHEJ et d’autre part que la position d’une CDB influe sur le choix du mécanisme de réparation.Mes résultats démontrent que l’organisation des gènes dans le noyau est un nouveau paramètre à prendre en compte dans l’étude des mécanismes de réparation de l’ADN et de tumorigénèse. / DNA is constantly assaulted by various damaging agents, leading to different types of lesions including double-strand breaks (DSBs). DSBs are the most harmful lesions to the cells and their inaccurate or inefficient repair can trigger genomic instability and tumorigenesis. To cope with DSBs, cells evolved several repair pathways, including non-homologous end joining (NHEJ) and homologous recombination (HR). A fine regulation of the balance between these two pathways is necessary to avoid genomic instability.All of these mechanisms happen in the nucleus, which is highly heterogeneous in mammalian cells. Indeed, it encompasses several compartments and regions of various chromatin compaction levels. My PhD project focused on the influence of nuclear architecture on DNA repair pathway choice. I demonstrated on one hand that the nuclear pore protein Nup153 influences the balance between HR and NHEJ and on the other hand that the position of a DSB influences the choice of the repair pathway that will be used.My results demonstrate that gene positioning is a new important parameter in the study of DNA repair and tumorigenesis.

Page generated in 0.0884 seconds