• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 210
  • 154
  • 26
  • 18
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 580
  • 580
  • 150
  • 148
  • 139
  • 94
  • 86
  • 76
  • 55
  • 52
  • 40
  • 39
  • 36
  • 35
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Effect of resuspension on mineralisation of organic material : Laboratory studies of water movement intensity and concentration of suspended sediment

Stenborg Larsson, Charlotte January 2005 (has links)
<p>The Earth’s surface contains of 71% oceans and a large part of the global carbon cycle takes place in the oceans. In the aquatic environment, the sediment-water interface plays an important role for the mineralisation of organic material. One factor that can affect the mineralisation is resuspension. Resuspension cause mixing of surface sediments and bottom water and result in a redistribution of the sediment when it settles again. Resuspension also increases the transport of oxygen into the sediment, reduces the diffusive boundary layer surrounding particles, and enhance the nutrient uptake. Resuspension can be induced by both wave action and bottom currents and is a common physical process in both shallow coastal areas and in the deep ocean. Human impacts, such as dredging and trawling, can also cause resuspension.</p><p>The effect of resuspension on mineralisation of organic material was studied in two experiments ex situ during December to April 2004/2005. The aim for Experiment 1 was to investigate how the intensity of the resuspension event affects the degradation rate. The aim for Experiment 2 was to investigate how different concentrations of resuspended sediment affect the degradation rate of organic matter. Sediment samples were collected in December and late March at a marine field station, Askö, Sweden. Sediment and bottom water were transferred to and incubated in sealed bottles. For Experiment 1, resuspension was created in bottles with a specially designed rotary table, creating different intensity of water movements. In Experiment 2, bottles with different concentrations of sediment were put on an ordinary rotary table. The mineralisation rates were in both experiments monitored by daily sampling of sediment-water slurry, and analysed for total inorganic carbon by a gas chromatography with a thermal detector, GC-TCD.</p><p>Results from Experiment 1 did not show any clear patterns regarding inorganic carbon formation. Experiment 2 did show clear patterns for two of six replicates of mineralisation of organic material. For these replicates the mineralisation rate were low according to previous studies. However, the sediment concentration seems to not affect the mineralisation rate. For both experiments, valuable information on how to better design experiments to investigate the importance of resuspension and the effect of mineralisation of organic material was yielded. Hence, further studies are needed to continue the investigation of the importance of resuspension for the mineralisation rate of organic material, and its impacts on the nutrient fluxes in the oceans.</p>
212

Leachate treatment and anaerobic digestion using aquatic plants and algae

Ström, Emma January 2010 (has links)
<p>Phytoremediation as a way to control and lessen nutrient concentrations in landfill leachate is a cheap and environmentally sustainable method. Accumulated nutrients in the plants can then be removed by harvesting and anaerobically digesting the biomass. This study presents two aquatic plants (L. minor (L.) and P. stratiotes (L.)) and one microalgae species (C. vulgaris (L.)), their capacities for growth and nutrient removal in leachate from Häradsudden landfill, Sweden, are investigated. The biogas potential of the two plants is determined via anaerobic digestion in a batch run, followed by a lab-scale reactor run for L. minor only. Results show that growth in leachate directly from the landfill is not possible for the selected species, but at a leachate dilution of 50% or more. Nutrients are removed in leachates with plants to a higher extent than in leachates without, yet the actual amounts do not differ notably between plant species. L. minor proves a better choice than P. stratiotes despite this as growth is superior for L. minor under the experimental conditions of this study. Considering biogas production, L. minor gives more methane than P. stratiotes according to the results from the batch run. The former is however not suitable for large-scale anaerobic digestion unless as an additional feedstock due to practical cultivation issues.</p>
213

A laboratory study on the immobilisation of inorganic chlorine in soil

Thomsen, Frida January 2006 (has links)
<p>Inorganic chlorine (Clinorg) is generally considered to be inert and has been used as a tracer for groundwater movements. This assumption is thereby fundamental for current knowledge about soil biogeochemistry. However, recent work showed that Clinorg can be retained, i.e. immobilised, in soil, which contradicts the previous assumptions. The aim of this laboratory study was to investigate if the processes that immobilise Clinorg in soil are affected by molecular oxygen (O2), and if the immobilisation occurs in the top soil layer only or also further down were the soil structure is different from the upper soil layer. Two experimental set-ups have been established. In the first experiment regarding the O2 regime (OXANIS), the immobilisation of Clinorg was studied in soil under oxic and anoxic conditions, respectively. In a second incubation study (SOLIS) the immobilisation was studied under oxic conditions in different layers of a coniferous forest soil. To investigate the immobilisation of Clinorg, a method using radiolabelled chloride 36 (36Clinorg) was applied. The use of radiolabelled chloride is an excellent and reliable method for studying transformation processes in soil systems. The results of the laboratory study showed that Clinorg retention rates under oxic conditions were much higher than retention rates under anoxic conditions, indicating an important role of O2. Furthermore, the immobilisation of Clinorg occurred in all soil layers were oxygen is provided, but rates were highest in the top soil layer (organic layer, O-horizon). Clearly, O2 influenced the net Clinorg retention, but additional studies are required to identify the processes behind this result. The calculated immobilisation rates for Clinorg in the three soil horizons correspond to the amount of organic material detected in the different soil horizons indicating a strong connection between the occurrence of organic matter in soil and the immobilisation of Clinorg.</p>
214

Modeling Chloride Retention in Boreal Forest Soils - synergy of input treatments and microbial biomass

Oni, Stephen Kayode January 2007 (has links)
<p>The hypothetical assumption that chloride is conservative in the soil has been debated for the last decade. The results of the recent years of study in chlorine biogeochemistry show that chloride is non-conservative but rather participates in complex biogeochemical reactions in the soil. These interactions in nature inform the development of simplified hydrochemical model of chloride dynamics in the soil that is driven on soil routine component of HBV hydrological model. This novel attempt affords the opportunity to explore chlorine biogeochemistry further by evaluating the biological processes such as microbial biomass that predominate chlorine cycles in the same order of magnitude as earlier studied abiotic factors. Data from soil lysimeter experiment with different inputs treatments were used in the calibration and validation of both the hydrological and biogeochemical model. The results show that (1) model efficiency reduces with decreasing water residence and with increasing soil organic matter. (2) Longer water residence time (low water input), high chloride and high nitrogen input loads relatively enhance maximum biomass accumulation in a shorter time span. (3) Chloride retention time reduces with increasing chloride loads under short water residence. (4) Microbial biomass growth rate is highest under high chloride input treatments. (5) Biomass death rates shows reducing trend under short water residence (High water input). Further researches are therefore suggested for possible model expansion and to make the results of this model plausible under field conditions.</p>
215

Bottensubstrat och dess inverkan på reducering av BOD<sub>5</sub>, COD och TKN i lakvatten genom konstruerade rotzonsanläggningar : En pilotstudie vid Univates, Lajeado – RS Brasilien

Ekholm, Emy January 2010 (has links)
<p>Treatment wetlands been showed efficient for reducing pollutant in waste water. In Lajeado – RS, Brazil the landfill has poor leachate water treatment. It is necessary to supplement the treatment plant because they need to reduce BOD, COD and nitrate of the water going to recipient. A subsurface flow wetland (SSF) can be a good choice.  In order to be able to design an efficient SSF it is important to understand how the grain sizes of a substrate affect the reducing of pollutants in waste water. This study focus on two substrate, sand with grain size of 0 - 3 mm and gravel with the grain size of 10 - 20 mm. To see the grain size reduces BOD, COD and nitrate best, the experiment used eight pilot scales SSF for leachate water treatment, four filled with sand and four filled with gravel. Two different flows, four with batch and four used continuous flow; two of each was planted with <em>Thypa angustifolia</em> <em>L</em>. Samples were taken from each wetland every week during a four week period. The results showed that the wetlands with the fine- grained substrate; sand gave the better reduction of BOD, COD and TKN (total kjeldahl kväve). It also showed great reduction in color. Important to notice in this study is the lack of time; more samples are required to be able to establish a pattern.</p>
216

New Electrochemical and Optical Detection Methods for Biological and Environmental Applications

Dansby-Sparks, Royce Nicholas 01 August 2010 (has links)
Detection of chromium and vanadium is of interest for biomedical and environmental applications. The two metals have narrow limits between being essential and toxic for humans. Ultra-sensitive techniques have been studied to measure Cr and V at low concentrations found in human blood and environmental samples. Bismuth film and mercury-alloy electrodes have been developed as alternatives to traditional Hg-based electrodes for Cr and V detection. While catalytic adsorptive stripping voltammetry (CAdSV) has been used to detect Cr and V, little is known about the process. The mechanisms of CAdSV have been probed to provide a better understanding of its exceptional sensitivity and selectivity. Near-real time monitoring of plume gas constituents is desired as a diagnostic tool for combustion efficiency, ensuring safe testing conditions and observing releases of green house gasses. Ground testing rockets is a crucial preliminary step that ensures their performance during critical space missions. Optical sol-gel sensors for carbon dioxide have been developed for remote sensing applications. They are inexpensive and are compatible with the harsh environments encountered during rocket plume tests. The sensors are a viable approach to compliment current infrared (IR) measurements for real-time carbon dioxide detection. Additional work on kerosene and isopropyl alcohol sensing has been explored for incorporation into a multi-analyte sensing platform.
217

Assessment of Environmental Pollutants in Humans from Four Continents : Exposure levels in Slovakia, Guinea-Bissau, Nicaragua and Bangladesh

Linderholm, Linda January 2010 (has links)
Humans are continuously exposed to complex mixtures of anthropogenic chemicals. This thesis focus on human exposure to persistent organic pollutants (POPs). POPs ability to bioaccumulate and biomagnify together with the extensive historical use of POPs in e.g. agriculture and industry have resulted in detection of these compounds in humans and animals from all over the world. Adverse health effects caused by POPs are of particular concern for newborns and young individuals. The objective of this thesis is to assess human exposure to a selected set of POPs and their metabolites. More specifically, one aim of my thesis is to determine the exposure to polychlorinated biphenyls (PCBs) and in particular their methylsulfonyl and hydroxylated metabolites in humans from a “hot-spot” area of PCB contamination in eastern Slovakia. The maternal transfer of these chemicals is studied. Further, another specific aim is to determine occurrence, levels and, when possible, temporal trends of POPs in children and adults from three developing countries, Nicaragua, Guinea-Bissau and Bangladesh. High concentrations of PCBs and their metabolites are shown in men and women from Michalovce in eastern Slovakia. Placental transfer of methylsulfonyl-metabolites of PCBs and 4,4’-DDE was observed for the first time. Decreasing temporal trends of the majority of POPs are shown in serum from a cohort of policemen from Guinea-Bissau. In contrast, the levels of polybrominated diphenyl ethers (PBDEs) show an increasing time trend. Within five years, decreasing levels of POPs were also shown in children working and living at a waste disposal site in Nicaragua. Children working and living at waste disposal sites in Bangladesh have considerably lower levels of POPs compared to the children from Nicaragua except for 4,4’-DDT and 4,4’-DDE that are present at very high concentrations, indicating ongoing use of technical DDT. There are many studies on levels and trends of environmental pollutants from the developed industrial countries in the world, whereas data from developing countries is still scarce. This thesis contributes to partly fill this data gap since it includes assessments of POPs in children and adults from four countries on four continents. / At the time of doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Manuscript. Paper 6: Manuscript.
218

Occupational exposure to brominated flame retardants : With emphasis on polybrominated diphenyl ethers

Thuresson, Kaj January 2004 (has links)
Brominated flame retardants (BFRs) are a diverse group of chemicals, which are used to slow down or inhibit the development of fires. BFRs are incorporated into a wide range of consumer products that are considered as potential fire hazards, such as TV-sets, household appliances, computers, and textiles. The production and use of BFRs is extensive and consists of mainly tetrabromobisphenol A (TBBPA), polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecan (HBCD). BFRs in general, but in particular the PBDEs, have led to both scientific and public concern since they have been found to bioaccumulate in humans and wildlife. The general population is targeted by the PBDEs due to their applications and via the food web. Occupational exposure occurs not only during direct handling of BFRs, but also during handling, repair and dismantling of flame retarded goods. This thesis is aimed to assess occupational exposure to BFRs. It is mainly focused PBDEs and especially the PBDEs with high bromine content, such as decabromodiphenyl ether (BDE-209). The work has been accomplished by analysis of BFRs in indoor air at industries handling BFRs or flame retarded goods, and by analysis of blood drawn from workers with potential exposure to BFRs. A referent group, abattoir workers with no occupational exposure to PBDEs, was also investigated. Data from these cross-sectional investigations and from serum sampling during vacation in PBDE-exposed workers have been used for calculation of apparent halflives of hepta- to decaBDE in serum. The results clearly show that the workers were exposed to PBDEs when handling PBDE containing products or goods. The serum PBDE levels in computer technicians were found to correlate to the estimated cumulative work hours with computers. Exceptionally high concentrations of BDE-209, almost up to 300 pmol/g lipid weight (l.w.) were observed in serum from rubber workers manufacturing or handling rubber compound that was flame retarded with a technical mixture of decabromodiphenyl ether (DecaBDE). Elevated concentrations of PBDEs with eight or nine bromine substituents were also observed. In an electronics dismantling plant, where elevated levels of PBDEs previously had been observed, reduced serum levels of some, but not all PBDE congeners were observed after industrial hygiene improvements. Notably, it was observed that the BDE-209 concentrations in referents with no occupational exposure were similar to the concentrations of 2,2’,4,4’- tetrabromodiphenyl ether (BDE-47), often referred to as the most abundant PBDE congener in humans and wildlife. Additionally, PBDEs with high bromine content were found to have a fast rate of elimination or transformation in humans, based on serum analysis. BDE-209 had an apparent half-life in serum of only 15 days. The possibility of quantifying BFRs, such as PBDEs, in human serum at low levels of detection has been achieved by reducing the contamination of the samples and procedural blanks. Major efforts have been done to develop routines and clean up methodology to enable an almost contamination-free environment at the laboratory. The use of a clean room has decreased PBDE levels in the blanks to acceptable limits. The modifications of the original analytical method have made it possible to quantify almost all PBDE congeners of interest in one GC/MS run. Occupational and general background exposure of BFRs to humans will continue as long as these chemicals are a part of our daily life and present as environmental contaminants. The present scientific knowledge of the potential health risks of these BFRs still needs to be further developed. It should be stressed that health effects to PBDEs have not been assessed in this work. It is the author's wish that this thesis should add another piece of knowledge to the puzzle of BFRs and BFR exposure to humans and that these data will be used in future risk assessments of PBDEs in particular.
219

Temporal and spatial trends of organohalogens in guillemot (Uria aalge) from North Western Europe

Jörundsdóttir, Hrönn January 2009 (has links)
The Arctic and sub-Arctic region of the North Atlantic is a remote area, also in relations to environmental contaminants, such as POPs, BFRs and last but not least, PFCs. Both the BFRs and PFCs are considered emerging pollutants of significant environmental concern. The main objective of this thesis is to increase the knowledge and understanding of organohalogen compound distribution in the Nordic environment, their occurrence in biota and change over time. The temporal change of environmental contaminants in the Baltic Sea was monitored over the years 1971 to 2001, with emphasis on BCPS. Further, the pollution profile of the Nordic region was investigated by using common guillemot eggs. Further, to investigate a single remote site, Iceland, in more depth, eggs from seven marine bird species were collected and analysed. Both the organohalogen compounds mentioned above and their metabolites were investigated. The study focused also on an inter-species difference in the bird’s capability of metabolising xenobiotics. All environmental pollutants investigated in the Baltic Sea show decreasing levels over the time period investigated. BCPS showed a remarkably small change over time compared to other compounds. These results reinforce the previous findings, indicating the North Atlantic as remote where the concentrations of the organohalogens are lower compared to Europe in general. There are some exceptions however; the concentration of HCB is ubiquitously distributed across the study area. Further, the spatial trends of the PFCs are complicated and differ within the PFC group. When comparing bird species from Iceland, the concentration of organohalogens mainly depends on trophic level, while migration seems to contribute to a lesser extent. There are some similarities in the metabolism between the bird species investigated. However, the guillemot seems to distinguish itself from other marine birds, with a different composition of metabolites, indicating a different metabolic capacity. In conclusion, even human populations living in remote areas need to minimise the release of pollutants to the environment. Long term, well organised, and extensive governmental monitoring programs are highly recommended to follow the quality the environment and to detect any immediate and/or new threats of chemical pollutants.
220

Modeling Chloride Retention in Boreal Forest Soils - synergy of input treatments and microbial biomass

Oni, Stephen Kayode January 2007 (has links)
The hypothetical assumption that chloride is conservative in the soil has been debated for the last decade. The results of the recent years of study in chlorine biogeochemistry show that chloride is non-conservative but rather participates in complex biogeochemical reactions in the soil. These interactions in nature inform the development of simplified hydrochemical model of chloride dynamics in the soil that is driven on soil routine component of HBV hydrological model. This novel attempt affords the opportunity to explore chlorine biogeochemistry further by evaluating the biological processes such as microbial biomass that predominate chlorine cycles in the same order of magnitude as earlier studied abiotic factors. Data from soil lysimeter experiment with different inputs treatments were used in the calibration and validation of both the hydrological and biogeochemical model. The results show that (1) model efficiency reduces with decreasing water residence and with increasing soil organic matter. (2) Longer water residence time (low water input), high chloride and high nitrogen input loads relatively enhance maximum biomass accumulation in a shorter time span. (3) Chloride retention time reduces with increasing chloride loads under short water residence. (4) Microbial biomass growth rate is highest under high chloride input treatments. (5) Biomass death rates shows reducing trend under short water residence (High water input). Further researches are therefore suggested for possible model expansion and to make the results of this model plausible under field conditions.

Page generated in 0.0851 seconds