• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • 1
  • Tagged with
  • 18
  • 18
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Long-Term Recovery of South Indian Creek Following Interstate Construction

McClure, Clara 01 December 2013 (has links) (PDF)
The expansion of Interstate 26 from Erwin, TN to the North Carolina border was a project that potentially adversely impacted South Indian Creek because of the steep landscapes and potential for erosion. Several studies have shown the short-term, negative effects of road construction on the water quality of nearby water bodies. Non-point source pollution is the major source of water pollution in the United States. The primary objective of this research is to evaluate the long-term effects of the construction of Interstate 26 on South Indian Creek to see if there has been any ecological recovery. The Environmental Health Sciences Laboratory of East Tennessee State University was contracted by the Tennessee Department of Transportation to collect data from before construction (1991-1992), during construction (1993-1994), and postconstruction (1995-1996). Comparison of microbial enzyme activities and other parameters to present-day (2012-2013) water quality conditions indicate that South Indian Creek has not fully recovered from the effects of the construction of the interstate.
12

Microbial interactions with soil minerals – effects on extracellular enzyme activity and aggregation

Olagoke, Folasade Kemi 26 October 2022 (has links)
Microorganisms interact with different soil components, such as varying substrates and soil minerals, to drive soil processes and functionality. They can be influenced by the environment, but they themselves can influence their environment by their activities, for example through the production of extracellular enzymes and extracellular polymeric substances (EPS). The formation and stability of aggregates as the backbone of the soil structure, for instance, are thought to be largely influenced by soil microorganisms, or vice versa. There remain, however, open questions as to whether and how microorganisms can influence soil aggregation. While microbes are influencing their environment their interaction with the soil minerals could also change their responses upon adsorption - affecting their influence on soil aggregation. Therefore, the overarching goal of this thesis was to investigate the effect of soil minerals, in particular clay content, on the composition and activity of soil microbial community, with a specific focus on enzyme activities and EPS. Finally, the microbial control of soil aggregation through the influence of substrate availability was explored. In total, two adsorption experiments and two incubation experiments were conducted using soils manipulated experimentally with increasing clay content. The sandy soil was amended with different amounts of soil minerals (i.e. montmorillonite) to achieve a gradient in clay content. For the first incubation experiment, organic substrates differing in decomposability (i.e., starch and cellulose) were added to the soil to stimulate microbial activities and incubated for 80 days. Soil samples from the first incubation experiment were analysed after 0, 3, 10, 20, 40 and 80 days for enzyme activities, microbial community composition, biomass C, EPS-protein and polysaccharide. Additionally, the geometric mean diameter and mean weight diameter of the soil aggregates were determined as measures of aggregate formation and stability, respectively. The first adsorption experiment examined the effect of soil mineral phases on the activities of extracellular enzymes using commercially available extracellular enzymes (α-glucosidase) added to the soil. The second adsorption and incubation experiment investigated the persistence of extracellular enzyme activities (commercially available α-amylase and cellulase) affected by soil minerals. For further insight into how other soil minerals affect extracellular enzymes, kaolinite and goethite in addition to montmorillonite were included in the second adsorption and incubation experiment. The prepared complexes (enzyme + soil and/or soil minerals) from the second adsorption experiment were incubated for 100 days. Further analytical methods include the determination of enzyme activities, microbial biomass C, extraction and quantification of the soil EPS, protein analyses, DNA isolation, DGGE, qPCR and Illumina sequencing. The adsorption experiment showed that extracellular enzyme activities decreased with increasing clay contents. In contrast, such an inhibitory effect on microbial enzyme activity was only observed directly in the incubation experiment after the stimulation of in-situ microorganisms for extracellular enzyme production through substrate addition. Higher extracellular enzyme activities at later incubation days in soils with high clay content suggested an adaptation of the microbial community in response to soil clay content and/ or persistence of extracellular enzymes by adsorption to mineral surfaces. However, the second adsorption experiment showed that the high specific activity and persistence of the enzymes were constrained by the availability of sorption sites. It is therefore reasonable to assume that soil mineral phases support microorganisms in less-sorptive environments by sparing energy on enzyme production, since even a small enzyme release could already propel sufficient activities to degrade target carbon substrates. Starch amendment accelerated respiration and microbial biomass much more than cellulose. While microbial community differed depending on the C substrate (starch or cellulose) added, clay addition had a stronger influence on alpha diversity than substrate addition. Although the production of EPS-protein was closely linked to the provision of additional substrates, the addition of clay minerals resulted in more EPS production than when no additional clay was present. By correlating soil aggregation (stability and formation) with the recorded microbial parameters (that is biomass C, EPS-protein and EPS-polysaccharide), both EPS-protein and EPS-polysaccharide exhibited a significant control on aggregate formation and microbial processes, though, surprisingly, more strongly with high clay content. It was observed that EPS is only a transient compound, which initiates aggregate formation, but clay content plays a more significant role in long-term aggregate stabilization. Overall, this thesis contributed to our knowledge about the interaction of microorganisms with the soil mineral phase and their influence on soil structural stability. The findings established that soil minerals shape the composition and activity of microbial communities. In turn, the microbial production of EPS seems to be more significant for aggregate formation than stability. The results on the effect of soil minerals on extracellular activities provided a paradigm that the persistence of enzyme activities by adsorption does not always hold. Producing EPS might contribute to microbial adaptation that mitigates the negative effect of adsorption on extracellular enzymes. It might also be probable that the EPS become a substance of degradation for the extracellular enzymes. Overall, the results indicated that in clay-rich soils the process leading to extracellular enzyme persistence can be stochastic, depending on multiple factors including sorption sites and substrate availability. Labile organic C clearly plays a role in aggregate formation by supporting EPS production. However, increasing clay content enhanced aggregate stability, promoted the development of distinct microbial communities and increased EPS production. The discrepancy so observed in the contribution of the two EPS parameters, EPS polysaccharide and protein, on soil aggregation points to the need for inclusion of different EPS compositions in future studies relating to soil aggregation.
13

Impact de la nature du couvert végétal sur la diversité taxonomique et fonctionnelle des champignons symbiotiques et des microorganismes eucaryotes associés / Impact of tree species on taxonomic and functional diversity of ectomycorrhizal fungi and associated eukaryotic microorganisms

Damon, Coralie 11 May 2010 (has links)
Au sein des sols forestiers, la richesse taxonomique et le rôle des microorganismes eucaryotes (en grande partie des champignons) restent encore largement méconnus. L’espèce d’arbre est un des facteurs qui structurent les communautés de ces microorganismes. Nous avons étudié l’impact de l’essence forestière (hêtre et épicéa) sur la diversité taxonomique et fonctionnelle de ces communautés par une approche métatranscriptomique et une approche biochimique (focalisée sur les champignons ectomycorhiziens). Nous avons montré un effet de la séquence étudiée (ADNr 18S, ADNc) sur la distribution taxonomique des communautés et développé un nouveau marqueur moléculaire mitochondrial pour l’étude des communautés de champignons métaboliquement actifs. L’identification de gènes d’intérêt écologique et industriel par séquençage systématique des banques métatranscriptomiques ainsi que l’identification fonctionnelle d’une nouvelle famille de transporteursmembranaires montrent l’intérêt de l’approche métatranscriptomique. L’approche biochimique a consisté en un dosage à haut débit, sur des extrémités racinaires ectomycorhizés, d’activités enzymatiques liées à la dégradation de la matière organique et à la mobilisation de l’azote et du phosphore du sol. L’ensemble de ces approches a permis de montrer un impact de l’essence forestière sur la nature des espèces présentes plutôt que sur la richesse taxonomique et une préférence d’hôte de certains groupes fongiques ectomycorhiziens. L’approche biochimique a montré une redondance fonctionnelle importante pour certaines activités enzymatiques tandis qu’une autre activité enzymatique était spécifique d’un groupe taxonomique fongique. / In forest soils, taxonomic richness and functional diversity of eukaryotic microorganisms (mainly Fungi) remain largely unknowned. Tree species is one of the main factors that structure eukaryotic microbial communities. We have studied the impact of tree species (beech and spruce) on taxonomic and functional diversity of these communities by using a metatranscriptomic approach and a biochemical one focusing on ectomycorrhizal fungi. We showed an effet of different sequences (18S rDNA, cDNA) on taxonomic composition of eukaryotic microbial communities and we developped anew mitochondrial molecular marker for the study of metabolically active fungal communities. Identification of ecologically and industrially important genes by the shotgun sequencing of metatranscriptomic libraries and also identification of a new family of transmembrane transporter demonstrate the great potential of the metatranscriptomic approach. The biochemical approachconsisted in a multiple enzymatic test carried out on ectomycorrhizal roots, of enzyme activities linked to organic matter degradation and phosphorus and nitrogen mobilization. All these approaches revealed an impact of tree species on the microbial species composition but not on taxonomic richness and also host preference for some ectomycorrhizal taxonomic groups. The biochemical approach showed a high functional redundancy for some enzyme activities while one activity was very specific of an ectomycorrhizal taxonomic group.
14

Antioxidant enzyme activities in fluvial biofilms as biomakers of metal pollution

Bonet Sánchez, Berta 28 February 2013 (has links)
The present thesis aims to evaluate the use of antioxidant enzyme activities (AEA) of biofilm communities as biomarkers of metal pollution (mainly Zn) in fluvial ecosystems. In order to test AEA as biomarkers of metal pollution as well as their responses to environmental variables, several ecotoxicological experiments have been performed. A zoom from field studies (with high ecological realism) to microcosm experiments (under controlled conditions) has been done to fill the gap between both approaches and understand AEA responses under a multiple-stress (environmental and metallic) scenario. The field studies were carried out in the Riera d’Osor, a tributary of the Ter, located in the region of La Selva (Girona province) / L’objectiu d’aquesta tesi és avaluar l’ús de les activitats enzimàtiques antioxidants (AEA) dels biofilms com a biomarcadors de contaminació metàl·lica (principalment per zinc (Zn)) en els ecosistemes fluvials. Per tal d’estudiar la resposta de les AEA a la contaminació metàl•lica, així com també la resposta a altres canvis ambientals (situacions d’estrès múltiple), s’han realitzat diversos experiments ecotoxicològics fent un zoom des d’estudis de camp (amb un elevat realisme ecològic) fins a un estudi de laboratori utilitzant microcosmos (amb condicions controlades). Els estudis de camp s’han dut a terme a la riera d’Osor, afluent del Ter, situada a la comarca de la Selva (província de Girona)
15

Ecological gradients caused by land-use change and land management alter soil microbial biomass and community functioning in a tropical mountain rainforest region of southern Ecuador

Tischer, Alexander 11 January 2016 (has links) (PDF)
Global change phenomena, such as forest disturbance and land-use change significantly affect elemental balances as well as the structure and function of terrestrial ecosystems. Inappropriate land management often causes nutrient losses and finally soil degradation and loss of soil functioning. Especially in tropical ecoregions, soil degradation by nutrient losses is widely abundant. Soil microorganisms are the proximate agents of many processes performed in soils and are regarded as sensitive bio-indicators. However, the incorporation of microbial responses to the definition of critical soil conditions is not intensively developed. In the present thesis, several data analyses of the relationships between ecosystem disturbance and land-use change (natural forest, pastures of different ages, secondary succession) and a diverse set of soil ecological characteristics in the tropical mountain rainforest region of southern Ecuador were compiled. In particular, it was tested whether soil microbial biomass and community functioning were sensitive to land-use change effects. Furthermore, an information-theoretic approach was applied to find the factors that regulate soil microbial biomass and community function. Finally, in a nutrient enrichment experiment the above- and belowground responses to N and P additions were examined. The tested research questions and results were linked to the theory of ecological stoichiometry in order to connect the research to a sound and unifying scientific basis. Soil and microbial stoichiometry were affected by both land-use change and soil depth. After forest disturbance, significant decreases of soil C:N:P ratios at the pastures were fol-lowed by increases during secondary succession. Microbial C:N ratios varied slightly in response to land-use change, whereas no fixed microbial C:P and N:P ratios were observed. Shifts in microbial community composition were associated with soil and microbial stoichiometry. Strong positive relationships between PLFA-markers 18:2n6,9c (saprotrophic fungi) and 20:4 (animals) and negative associations between 20:4 and microbial N:P point to land-use change affecting the structure of soil food webs. Significant deviations from global soil and microbial C:N:P ratios indicated a major force of land-use change to alter stoichiometric relationships and to structure biological systems. Data analysis reveals a strong impact of land-use change on soil microbial biomass, C-mineralization, gross-NH4-consumption and –production rates. According to the results of the IT-approach, combined models better describe effects of land-use change on soil microorganisms than single explanation models. Microbial resources and soil chemical environment were important pre-dictors for soil microbial biomass and community functioning. Little is known about the environmental drivers of the catalytic properties of EHEs (e.g., pH, nutrients) and their functional link to the structure of soil microbial communities. The activities of the six hydrolytic enzymes were tested. Microbial production of AP responded to the low P status of the sites by a higher investment in the acquisition of P compared to C. Three major drivers of enzyme activities were found to be significant for enzyme production: 1.) Microbial demand for P regulated the production of AP, provided that N and C were available. At the natural forest site the two-fold higher specific activity of AP pointed to a high microbial P-demand, whereas the production of AP was constrained by the availability of N and DOC after pasture abandonment. 2.) Microbial biomass that was controlled by pH and resource availability was the main driver for CBH, BG and NAG activities. 3.) Substrate induction due to increased litter inputs of herbaceous plant species seemed to regulate AG and XYL activities during secondary succession. The enzymes’ affinity to substrate, as a potentially critically enzyme kinetic parameter is understudied. The data analysis suggests that microbial communities adapted to environmental changes, demonstrated high flexibility of extracellular enzyme systems and selected for enzymes with higher catalytic efficiency compared with pure cultures. Under in situ conditions, enzyme-specific environmental drivers of the Km, e.g., the pH for XYL, the C:N ratio for AP, and the C availability for NAG were found. The data demonstrated that the higher substrate affinity of XYL and AP was associated with more abundance of Gram(-) bacteria. The catalytic efficiency of enzymes decomposing cellulose, hemicellulose, and starch positively correlated with the relative abundance of Gram(-) bacteria. The turnover rate of the tested substrates was three to four times faster at the young pasture site compared with the longterm pasture and secondary succession sites. Nutrient inputs by atmospheric deposition are known to affect terrestrial ecosystems. However, little is known about how N and P co-limited ecosystems respond to single nutrient enrichment. In this work the susceptibility of above- and belowground ecosystem compo-nents and of their linkages in an N and P co-limited pasture to N- and P-enrichment was assessed. It was tested if the plants´responses can be explained by the concept of serially linked nutrients introduced by Ågren (2004). In this concept, the control of the growth rate by one nutrient is assumed to depend on the control of a different cellular process by another nutrient. The responses of shoot and root biomass and C:N:P stoichiometry of the grass Setaria sphacelata (Schumach.) to moderate N, P, and N+P application over five years were investigated. In addition, the effects of nutrient enrichment on soil nutrient pools, on arbuscular mycorrhizal fungi (AMF) as well as on microbial biomass, activity, and community structure were tested. In order to evaluate the importance of different factors explaining microbial responses, a likelihood-based information-theoretic approach was applied. The application of N+P increased aboveground grass biomass. Root biomass was stimulated by P-treatment. Grass C:N:P stoichiometry responded by altering the P-uptake or by translocating P from shoot to root. In particular, root C:N and C:P stoichiometry decreased in P- and in N-treatment. Extractable fractions of soil C, N, and P were significantly affected by nutrient enrichment. P application increased the biomass of Gram-positive bacteria and the abundance of AMF, however, results of the IT-approach suggested indirect effects of nutrient enrichment on microbes. The responses of the N and P co-limited pasture to particular nutrient enrichment support the concept of serially linked nutrients. The present study provides evidence for the fundamental importance of P for controlling resource allocation of plants in responses to nutrient enrichment. Resource allocation of the grass rather than direct effects of nutrient additions drives changes in AMF, microbial biomass, community structure, and activity. / Seit dem Übergang vom Holozän zum Anthropozän greift der Mensch immer stärker in globale und regionale Stoffkreisläufe ein. Durch die Zerstörung von Naturwäldern und Landnutzungswandel werden die Strukturen und die Funktionen der Ökosysteme stark verändert. Unangepasste Landnutzung führt zu Nährelementverlusten, die mittel- bis langfristige zur Bodendegradation und zur Reduktion von Bodenfunktionen führen. Solche Veränderungen sind insbesondere in den Tropen zu beobachten. Bodenmikroorganismen spielen in den Stoffkreisläufen eine zentrale Rolle. Zudem sind sie sensitive Bioindikatoren für den Zustand von Ökosystemen. Im Gegensatz dazu, werden die Bodenmikroorganismen noch nicht ausreichend für die Zustandsbewertung von Ökosystemen verwendet. In der vorliegenden Dissertation werden verschiedene Datenanalysen zu den Beziehungen von Landnutzungswandel (Naturwald, Weiden verschiedener Alter, sekundäre Sukzession) und den Eigenschaften der Bodenmikroorganismen in einer tropischen Bergregenwaldregion Süd-Ecuadors zusammengefasst. Ein besonderer Fokus lag darauf zu prüfen, ob die mikrobielle Biomasse und die Funktionen die von der mikrobiellen Gemeinschaft geleistet werden (z.B. Enzymaktivitäten) durch den Landnutzungswandel beeinflusst werden. Ein informations-theoretischer Ansatz wurde verwendet um verschiedene Erklärungsansätze der steuernden Faktoren vergleichend zu testen. Darüber hinaus wurden in einem Weidedüngungsexperiment die Reaktionen der ober- und der unterirdischen Ökosystemkomponenten auf die Anreicherung mit N und P getestet. Um die Ergebnisse auf eine breite wissenschaftliche Basis zu stellen wurde die Untersuchungen in den Kontext der Theorie die Ökologischen Stöchiometrie eingeordnet. Die C:N:P Stöchiometrie im Boden und in den Mikroorganismen veränderte sich durch den Landnutzungswandel und mit der Bodentiefe. Mit der Weideetablierung nahmen die C:N:P Verhältnisse im Boden deutlich ab, stiegen dann nach dem Verlassen der Weiden im Zuge der sekundären Sukzession wieder an. Das mikrobielle C:N Verhältnis variierte nur leicht, dagegen zeigten das C:P und N:P Verhältnis deutliche Veränderungen durch den Landnutzungswandel. Mit diesen Veränderungen in der Boden- und Organismenstöchiometrie waren auch Veränderungen in der Struktur der mikrobiellen Gemeinschaften verbunden. Deutliche positive Beziehungen existierten zwischen den saprotrophen Pilzen und den Protozoen. Die steigenden Mengen von Protozoen waren wiederrum mit sinkendem mikrobiellen N:P verbunden. Diese Muster weisen auf Veränderungen in den Bodennahrungsnetzten durch Landnutzungsänderungen hin. Sehr deutliche Abweichungen von globalen Mustern der C:N:P Stöchiometrie deuten darauf hin, dass der Landnutzungswandel signifikanten Einfluss auf die C:N:P Stöchiometrie ausübt. Der Landnutzungswandel beeinflusste auch die mikrobielle Biomasse, die Basalatmung, sowie die mikrobielle Aufnahme und Produktion von NH4-N im Boden. Dabei zeigten kombinierte Erklärungsansätze die adäquateren Beschreibungen der Muster. In den kombinierten Modellen zur Erklärung der mikrobiellen Biomasse und der mikrobiellen Leistungen überwogen Prädiktoren der mikrobiellen Ressourcen und der bodenchemischen Umwelt. Ein weiterer Schwerpunkt der Untersuchungen lag auf der Erfassung der Effekte des Land-nutzungswandels auf die Aktivität von extrazellulären Bodenenzymen. Bisher ist wenig darüber bekannt, welche Faktoren die katalytischen Eigenschaften steuern und beispielsweise, ob es Zusammenhänge zur mikrobiellen Gemeinschaftsstruktur gibt. Um diese Fragen näher zu beleuchten wurden sechs hydrolytische Enzyme basierend auf MUF-Substraten untersucht. Die mikrobielle Produktion von AP stand dabei in Zusammenhang mit dem niedrigen P-Status der untersuchten Böden. Das wurde besonders durch die hohe AP Produktion im Vergleich zu BG belegt. Im Allgemeinen konnten drei verschiedene Mechanismen festgestellt werden, die die Produktion der untersuchten EHEs vermutlich steuerten. 1.) Der P-Bedarf der Mikroorganismen regulierte die Produktion von AP, vorausgesetzt, dass ausreichend N und C zur Enzymsynthese zur Verfügung standen. 2.) Die Höhe der mikrobiellen Biomasse hat sich als wichtiger Faktor für die Produktion von CBH, BG und NAG gezeigt. Das deutet auf die konstitutive Produktion dieser Enzyme hin. 3.) Die substratinduzierte Produktion von Enzymen ist vermutlich entscheidend für die Aktivität von AG und XYL. Die Berücksichtigung der Enzymkinetiken, insbesondere der Michaelis-Menten-Konstante lieferte weitere Aufschlüsse über relevante Faktoren. Im Allgemeinen so scheint es, haben sich die mikrobiellen Gemeinschaften an die starken Umweltgradienten, die durch den Landnutzungswandel erzeugt worden angepasst. Im Vergleich zu den verfügbaren Daten aus Reinkulturen, wiesen die mikrobiellen Gemeinschaften der untersuchten Böden in der Regel eine deutlich höhere katalytische Effizienz auf. Auch für die Michaelis-Menten-Konstante sind die Faktoren enzymspezifisch. So ist für die Km von XYL der Boden-pH-Wert, für AP das C:N Verhältnis und für NAG die DOC-Menge entscheidend. Darüber hinaus haben sich deutliche Beziehungen zwischen der Menge an Gram(-)-Bakterien und der Substrataffinitäten von XYL und AP ergeben. Je höher die Gram(-)-Abundanz, desto höher war die Substrataffinität der Enzymsysteme. Gegenüber alter und degradierter Weiden, war der Umsatz der untersuchten Substrate im Oberboden der aktiv genutzten Weide drei- bis vierfach erhöht. In einem 5-jährigen Düngeexperiment in der Bergregenwaldregion der Anden Süd-Ecuadors wurden die Reaktionen des auf dieser Fläche N/P co-limitierten Grases (Setaria sphacelata), der Arbuskulären Mykorrhiza (AMF) sowie der Bodenmikroorganismen auf moderate N, P und N+P-Düngung untersucht. Die Zugabe von N+P erhöhte die oberirdische Biomasse (+61%) wohingegen die Wurzelbiomasse durch die Zugabe von P (+45%) anstieg. Die C:N:P Verhältnisse weisen auf veränderte P-Aufnahme oder Translokation von P in die Wurzeln hin. Im Besonderen verengte sich das Wurzel C:N and C:P in der P- und der N-Zugabe. Die aus dem Boden extrahierbaren C, N und P-Fraktionen wurden deutlich beeinflusst. Die Zugabe von P stimulierte die Biomasse Gram-(+)-Bakterien (+22%), die Abundanz der AMF (+46%) und die Brutto-N-Mineralisierung. Die Auswertungen deuten darauf hin, dass die Nährstoffanreicherung indirekt über die Veränderungen der Graswurzeln auf die Bodenorganismen wirkte. Die Ergebnisse bestätigen, dass N und P in den Reaktionen von co-limitierten Pflanzen eng miteinander verbunden sind. Vor allem aber steuert P grundlegend die Allokation von Ressourcen und wirkt damit auf andere Ökosystem-komponenten, z.B. auf die Struktur und Aktivität der Bodenmikroorganismen.
16

Ecological gradients caused by land-use change and land management alter soil microbial biomass and community functioning in a tropical mountain rainforest region of southern Ecuador

Tischer, Alexander 02 October 2015 (has links)
Global change phenomena, such as forest disturbance and land-use change significantly affect elemental balances as well as the structure and function of terrestrial ecosystems. Inappropriate land management often causes nutrient losses and finally soil degradation and loss of soil functioning. Especially in tropical ecoregions, soil degradation by nutrient losses is widely abundant. Soil microorganisms are the proximate agents of many processes performed in soils and are regarded as sensitive bio-indicators. However, the incorporation of microbial responses to the definition of critical soil conditions is not intensively developed. In the present thesis, several data analyses of the relationships between ecosystem disturbance and land-use change (natural forest, pastures of different ages, secondary succession) and a diverse set of soil ecological characteristics in the tropical mountain rainforest region of southern Ecuador were compiled. In particular, it was tested whether soil microbial biomass and community functioning were sensitive to land-use change effects. Furthermore, an information-theoretic approach was applied to find the factors that regulate soil microbial biomass and community function. Finally, in a nutrient enrichment experiment the above- and belowground responses to N and P additions were examined. The tested research questions and results were linked to the theory of ecological stoichiometry in order to connect the research to a sound and unifying scientific basis. Soil and microbial stoichiometry were affected by both land-use change and soil depth. After forest disturbance, significant decreases of soil C:N:P ratios at the pastures were fol-lowed by increases during secondary succession. Microbial C:N ratios varied slightly in response to land-use change, whereas no fixed microbial C:P and N:P ratios were observed. Shifts in microbial community composition were associated with soil and microbial stoichiometry. Strong positive relationships between PLFA-markers 18:2n6,9c (saprotrophic fungi) and 20:4 (animals) and negative associations between 20:4 and microbial N:P point to land-use change affecting the structure of soil food webs. Significant deviations from global soil and microbial C:N:P ratios indicated a major force of land-use change to alter stoichiometric relationships and to structure biological systems. Data analysis reveals a strong impact of land-use change on soil microbial biomass, C-mineralization, gross-NH4-consumption and –production rates. According to the results of the IT-approach, combined models better describe effects of land-use change on soil microorganisms than single explanation models. Microbial resources and soil chemical environment were important pre-dictors for soil microbial biomass and community functioning. Little is known about the environmental drivers of the catalytic properties of EHEs (e.g., pH, nutrients) and their functional link to the structure of soil microbial communities. The activities of the six hydrolytic enzymes were tested. Microbial production of AP responded to the low P status of the sites by a higher investment in the acquisition of P compared to C. Three major drivers of enzyme activities were found to be significant for enzyme production: 1.) Microbial demand for P regulated the production of AP, provided that N and C were available. At the natural forest site the two-fold higher specific activity of AP pointed to a high microbial P-demand, whereas the production of AP was constrained by the availability of N and DOC after pasture abandonment. 2.) Microbial biomass that was controlled by pH and resource availability was the main driver for CBH, BG and NAG activities. 3.) Substrate induction due to increased litter inputs of herbaceous plant species seemed to regulate AG and XYL activities during secondary succession. The enzymes’ affinity to substrate, as a potentially critically enzyme kinetic parameter is understudied. The data analysis suggests that microbial communities adapted to environmental changes, demonstrated high flexibility of extracellular enzyme systems and selected for enzymes with higher catalytic efficiency compared with pure cultures. Under in situ conditions, enzyme-specific environmental drivers of the Km, e.g., the pH for XYL, the C:N ratio for AP, and the C availability for NAG were found. The data demonstrated that the higher substrate affinity of XYL and AP was associated with more abundance of Gram(-) bacteria. The catalytic efficiency of enzymes decomposing cellulose, hemicellulose, and starch positively correlated with the relative abundance of Gram(-) bacteria. The turnover rate of the tested substrates was three to four times faster at the young pasture site compared with the longterm pasture and secondary succession sites. Nutrient inputs by atmospheric deposition are known to affect terrestrial ecosystems. However, little is known about how N and P co-limited ecosystems respond to single nutrient enrichment. In this work the susceptibility of above- and belowground ecosystem compo-nents and of their linkages in an N and P co-limited pasture to N- and P-enrichment was assessed. It was tested if the plants´responses can be explained by the concept of serially linked nutrients introduced by Ågren (2004). In this concept, the control of the growth rate by one nutrient is assumed to depend on the control of a different cellular process by another nutrient. The responses of shoot and root biomass and C:N:P stoichiometry of the grass Setaria sphacelata (Schumach.) to moderate N, P, and N+P application over five years were investigated. In addition, the effects of nutrient enrichment on soil nutrient pools, on arbuscular mycorrhizal fungi (AMF) as well as on microbial biomass, activity, and community structure were tested. In order to evaluate the importance of different factors explaining microbial responses, a likelihood-based information-theoretic approach was applied. The application of N+P increased aboveground grass biomass. Root biomass was stimulated by P-treatment. Grass C:N:P stoichiometry responded by altering the P-uptake or by translocating P from shoot to root. In particular, root C:N and C:P stoichiometry decreased in P- and in N-treatment. Extractable fractions of soil C, N, and P were significantly affected by nutrient enrichment. P application increased the biomass of Gram-positive bacteria and the abundance of AMF, however, results of the IT-approach suggested indirect effects of nutrient enrichment on microbes. The responses of the N and P co-limited pasture to particular nutrient enrichment support the concept of serially linked nutrients. The present study provides evidence for the fundamental importance of P for controlling resource allocation of plants in responses to nutrient enrichment. Resource allocation of the grass rather than direct effects of nutrient additions drives changes in AMF, microbial biomass, community structure, and activity. / Seit dem Übergang vom Holozän zum Anthropozän greift der Mensch immer stärker in globale und regionale Stoffkreisläufe ein. Durch die Zerstörung von Naturwäldern und Landnutzungswandel werden die Strukturen und die Funktionen der Ökosysteme stark verändert. Unangepasste Landnutzung führt zu Nährelementverlusten, die mittel- bis langfristige zur Bodendegradation und zur Reduktion von Bodenfunktionen führen. Solche Veränderungen sind insbesondere in den Tropen zu beobachten. Bodenmikroorganismen spielen in den Stoffkreisläufen eine zentrale Rolle. Zudem sind sie sensitive Bioindikatoren für den Zustand von Ökosystemen. Im Gegensatz dazu, werden die Bodenmikroorganismen noch nicht ausreichend für die Zustandsbewertung von Ökosystemen verwendet. In der vorliegenden Dissertation werden verschiedene Datenanalysen zu den Beziehungen von Landnutzungswandel (Naturwald, Weiden verschiedener Alter, sekundäre Sukzession) und den Eigenschaften der Bodenmikroorganismen in einer tropischen Bergregenwaldregion Süd-Ecuadors zusammengefasst. Ein besonderer Fokus lag darauf zu prüfen, ob die mikrobielle Biomasse und die Funktionen die von der mikrobiellen Gemeinschaft geleistet werden (z.B. Enzymaktivitäten) durch den Landnutzungswandel beeinflusst werden. Ein informations-theoretischer Ansatz wurde verwendet um verschiedene Erklärungsansätze der steuernden Faktoren vergleichend zu testen. Darüber hinaus wurden in einem Weidedüngungsexperiment die Reaktionen der ober- und der unterirdischen Ökosystemkomponenten auf die Anreicherung mit N und P getestet. Um die Ergebnisse auf eine breite wissenschaftliche Basis zu stellen wurde die Untersuchungen in den Kontext der Theorie die Ökologischen Stöchiometrie eingeordnet. Die C:N:P Stöchiometrie im Boden und in den Mikroorganismen veränderte sich durch den Landnutzungswandel und mit der Bodentiefe. Mit der Weideetablierung nahmen die C:N:P Verhältnisse im Boden deutlich ab, stiegen dann nach dem Verlassen der Weiden im Zuge der sekundären Sukzession wieder an. Das mikrobielle C:N Verhältnis variierte nur leicht, dagegen zeigten das C:P und N:P Verhältnis deutliche Veränderungen durch den Landnutzungswandel. Mit diesen Veränderungen in der Boden- und Organismenstöchiometrie waren auch Veränderungen in der Struktur der mikrobiellen Gemeinschaften verbunden. Deutliche positive Beziehungen existierten zwischen den saprotrophen Pilzen und den Protozoen. Die steigenden Mengen von Protozoen waren wiederrum mit sinkendem mikrobiellen N:P verbunden. Diese Muster weisen auf Veränderungen in den Bodennahrungsnetzten durch Landnutzungsänderungen hin. Sehr deutliche Abweichungen von globalen Mustern der C:N:P Stöchiometrie deuten darauf hin, dass der Landnutzungswandel signifikanten Einfluss auf die C:N:P Stöchiometrie ausübt. Der Landnutzungswandel beeinflusste auch die mikrobielle Biomasse, die Basalatmung, sowie die mikrobielle Aufnahme und Produktion von NH4-N im Boden. Dabei zeigten kombinierte Erklärungsansätze die adäquateren Beschreibungen der Muster. In den kombinierten Modellen zur Erklärung der mikrobiellen Biomasse und der mikrobiellen Leistungen überwogen Prädiktoren der mikrobiellen Ressourcen und der bodenchemischen Umwelt. Ein weiterer Schwerpunkt der Untersuchungen lag auf der Erfassung der Effekte des Land-nutzungswandels auf die Aktivität von extrazellulären Bodenenzymen. Bisher ist wenig darüber bekannt, welche Faktoren die katalytischen Eigenschaften steuern und beispielsweise, ob es Zusammenhänge zur mikrobiellen Gemeinschaftsstruktur gibt. Um diese Fragen näher zu beleuchten wurden sechs hydrolytische Enzyme basierend auf MUF-Substraten untersucht. Die mikrobielle Produktion von AP stand dabei in Zusammenhang mit dem niedrigen P-Status der untersuchten Böden. Das wurde besonders durch die hohe AP Produktion im Vergleich zu BG belegt. Im Allgemeinen konnten drei verschiedene Mechanismen festgestellt werden, die die Produktion der untersuchten EHEs vermutlich steuerten. 1.) Der P-Bedarf der Mikroorganismen regulierte die Produktion von AP, vorausgesetzt, dass ausreichend N und C zur Enzymsynthese zur Verfügung standen. 2.) Die Höhe der mikrobiellen Biomasse hat sich als wichtiger Faktor für die Produktion von CBH, BG und NAG gezeigt. Das deutet auf die konstitutive Produktion dieser Enzyme hin. 3.) Die substratinduzierte Produktion von Enzymen ist vermutlich entscheidend für die Aktivität von AG und XYL. Die Berücksichtigung der Enzymkinetiken, insbesondere der Michaelis-Menten-Konstante lieferte weitere Aufschlüsse über relevante Faktoren. Im Allgemeinen so scheint es, haben sich die mikrobiellen Gemeinschaften an die starken Umweltgradienten, die durch den Landnutzungswandel erzeugt worden angepasst. Im Vergleich zu den verfügbaren Daten aus Reinkulturen, wiesen die mikrobiellen Gemeinschaften der untersuchten Böden in der Regel eine deutlich höhere katalytische Effizienz auf. Auch für die Michaelis-Menten-Konstante sind die Faktoren enzymspezifisch. So ist für die Km von XYL der Boden-pH-Wert, für AP das C:N Verhältnis und für NAG die DOC-Menge entscheidend. Darüber hinaus haben sich deutliche Beziehungen zwischen der Menge an Gram(-)-Bakterien und der Substrataffinitäten von XYL und AP ergeben. Je höher die Gram(-)-Abundanz, desto höher war die Substrataffinität der Enzymsysteme. Gegenüber alter und degradierter Weiden, war der Umsatz der untersuchten Substrate im Oberboden der aktiv genutzten Weide drei- bis vierfach erhöht. In einem 5-jährigen Düngeexperiment in der Bergregenwaldregion der Anden Süd-Ecuadors wurden die Reaktionen des auf dieser Fläche N/P co-limitierten Grases (Setaria sphacelata), der Arbuskulären Mykorrhiza (AMF) sowie der Bodenmikroorganismen auf moderate N, P und N+P-Düngung untersucht. Die Zugabe von N+P erhöhte die oberirdische Biomasse (+61%) wohingegen die Wurzelbiomasse durch die Zugabe von P (+45%) anstieg. Die C:N:P Verhältnisse weisen auf veränderte P-Aufnahme oder Translokation von P in die Wurzeln hin. Im Besonderen verengte sich das Wurzel C:N and C:P in der P- und der N-Zugabe. Die aus dem Boden extrahierbaren C, N und P-Fraktionen wurden deutlich beeinflusst. Die Zugabe von P stimulierte die Biomasse Gram-(+)-Bakterien (+22%), die Abundanz der AMF (+46%) und die Brutto-N-Mineralisierung. Die Auswertungen deuten darauf hin, dass die Nährstoffanreicherung indirekt über die Veränderungen der Graswurzeln auf die Bodenorganismen wirkte. Die Ergebnisse bestätigen, dass N und P in den Reaktionen von co-limitierten Pflanzen eng miteinander verbunden sind. Vor allem aber steuert P grundlegend die Allokation von Ressourcen und wirkt damit auf andere Ökosystem-komponenten, z.B. auf die Struktur und Aktivität der Bodenmikroorganismen.
17

Using Diatoms and Biofilms to Assess Agricultural and Coal Mining Impacts on Streams, Spatio-Temporal Variability, and Successional Processes

Smucker, Nathan J. 22 September 2010 (has links)
No description available.
18

Aplikace ligninolytických hub na pevných substrátech pro degradace endokrinních disruptorů / Application of ligninolytic fungi on solid substrates for degradation of endocrine disrupters

Slavíková - Amemori, Anna January 2012 (has links)
Today a lot of attention is focused on compounds called endocrine disrupters (EDs) among substances released to environment by humans. They are a group of substances which can disturb function of hormonal system of organisms including humans. Their poor removal at wastewater treatment plants (WwTP) were shown at various studies, thus they can reach the environment in water. A prospective way for the degradation of EDs at WwTP can be their removal by ligninolytic fungi. They are able to degrade lots of lignin-like aromatic substances because of their highly nonspecific enzymes. In this work growth and enzyme production capability of four ligninolytic fungal strains were monitored on three solid substrates (straw pellets, poplar sawdust mixed with straw pellets, oak sawdust with straw pellets), which may be suitable substrates for fungal growth in bioreactors for wastewater treatment. Ability of these enzymes to degrade EDs were tested in in-vitro degradation experiment. Trametes versicolor was found as best degrading strain with 20 μg/ml of bisphenol A, 17 α- ethynylestradiol and nonylphenol degraded below a quantification limit within 24 hours. Fungal strains degraded EDs well on all of the three substrates but wood sawdust seemed to be a better substrate for fungal growth because straw pellets...

Page generated in 0.0534 seconds