• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 18
  • 14
  • 5
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 63
  • 13
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Degradation Of Epdm Via Gamma Irradiation And Possible Use Of Epdm In Radioactive Waste Management

Hacioglu, Firat 01 September 2010 (has links) (PDF)
In this study, degradation of ethylene propylene diene terpolymer (EPDM) via gamma radiation and possible use of EPDM in radioactive waste management were investigated. In estimation of radiation stability and possible use of EPDM in radioactive waste management, dose rate (both high and low), irradiation environment (in water and in air), additives (carbon black, zinc oxide, plasticizer) used in formulation, peroxide type (either aliphatic or aromatic) and content were parameters which were analyzed. Three EPDM samples having different peroxides were irradiated in water and in air with two different dose rates (993 Gy/h, 54 Gy/h) to 2163 kGy (for high dose rate) and 1178 kGy (for low dose rate). Irradiation periods for low dose rate were 2.5 years (last sample) which have not been observed in literature. Characterization of irradiated EPDM samples were done by mechanical (tensile, hardness, compression), dynamic mechanical (DMA), thermal (TGA-FTIR) and morphological (ATR-FTIR, XRD, SEM) tests. High dose rate irradiations were done in predicting how far EPDM resist to radiation and which dose rate emitted waste can be immobilized and stored in EPDM for 300 years. Low dose rate irradiations were carried out in determining morphological changes in structure, thermal stability, oxygen effect and types of reactions (crosslinking, chain scisson) which were dominant in irradiated samples. According to the test results, improvement in thermal properties and decrease in elasticity on EPDM via radiation were recorded from thermal and mechanical tests respectively. Moreover, structural changes were monitored from ATR-FTIR, SEM and XRD analysis. Mechanical tests showed that irradiated EPDM samples, which were differentiated with respect to peroxide type (aliphatic, aromatic), could resist up to total absorbed doses of 3750 kGy and 3955 kGy respectively. Up to 1178 kGy in low dose irradiation, there were not much structural changes, which were observed in ATR-FTIR analysis, in EPDM chain. It was concluded that EPDM rubber used in this study were radiation stable polymer so that they could possibly be used in conditioning of radioactive waste.
42

Thermal and radiochemical of neat and ATH filled EPDM : establishment of structure/properties relationships

Shabani, Amin 27 May 2013 (has links) (PDF)
EPDM elastomer is widely used as the insulation of low to medium voltage electrical cables used in power plants, for which the life-time prediction has been hampered by the lack of knowledge on structure/mechanical properties, and the nonexistence of pertinent criteria of structural failure. In an attempt to fill this gap, three EPDM matrices filled with 0, 33 and 100 phr of pristine and surface treated ATH were crosslinked by dicumyl peroxide at 170°C and, subsequently, aged thermally at 90,110 and 130°C, and radiochemically under 0.1, 1 and 10 kGy.h-1, in air. A multi-scale approach was employed to analyze the oxidation of EPDM at molecular scale, and to determine its consequences at macromolecular and macroscopic scales by using several complementary characterization techniques: FTIR spectrophotometry, differential calorimetry, rheometry in melt state, swelling test, uniaxial tensile testing, etc. The structure/properties relationships established in this study are capable to explain, in particular, the alteration of elastic and fracture properties of the EPDM matrices due to chain scissions, and the reinforcement of the filler/matrix interphases induced by the specific conditions of oxidation.
43

Preparation of Thermoplastic Vulcanizates from Devulcanized Rubber and Polypropylene

Mutyala, Prashant 06 November 2014 (has links)
One of the current problems faced by mankind is the problem of safe disposal of waste rubber. Statistics show that the number of waste tires is continuously increasing at a very rapid rate. Since rubber materials do not decompose easily (due to their crosslinked structure), they end up being a serious ???environmental problem???. An intuitive solution to prevent the accumulation of the scrap tires is to continuously reuse them. A new patented reclamation method was discovered in our laboratory, which makes use of a twin screw extruder (TSE) in order to produce reclaimed rubber (referred as devulcanized rubber (DR) from here on) of very high quality. Also, this method has proven to be more economical than other commercial reclaiming methods. Products made solely from a reclaimed material face challenges from those made by virgin materials because of relatively poor properties. However, the striking advantage of using reclaimed rubbers is the cost reduction. Hence, it is important to work on establishing methods by which these reclaimed rubbers could be efficiently used and incorporated into present day products. The deterioration of properties could be minimized by blending them with varying amounts of other materials. A possibility in this direction is manufacturing of thermoplastic vulcanizates (TPVs) using reclaimed rubber and general purpose thermoplastics. In accordance with this idea, the focus of this research is to prepare DR and polypropylene (PP) based TPVs. DR is unique as the rubber itself consists of two phases- one phase consisting of uncrosslinked (including devulcanized rubber molecules), and the other phase consisting of crosslinked (un-devulcanized) rubber. These un-devulcanized crumbs act as stress concentrators because they do not break-up easily, and lead to poor physical properties. Hence, this project tries to find out ways to increase the interfacial adhesion between the rubber and PP by using reactive and non-reactive techniques. Preliminary experiments were carried out in a batch mixer to compare DR and rubber crumb (CR). DR based TPVs showed better properties than CR based TPVs, however, the properties were not useful for commercial applications. Sulphur based dynamic vulcanization was studied in a batch mixer and found to be not effective in improving the properties of DR based blends. On the other hand, DCP/ sulphur based curing system was found to show significant improvement in properties. Therefore, DCP/sulphur based curing package was studied in detail on the blends consisting of DR and PP. The optimum ratio of DCP/sulphur was found to vary depending on the ratio of DR/PP. A hypothesis regarding the mechanism of DCP/sulphur curing has been proposed, which seem to correlate well with the experimental results observed. Additionally, it was determined that DR prepared from tire rubber (DRT) performed better than DR prepared from waste EPDM (DRE) for the curing system used. Accordingly, experiments on a TSE were carried out using DRT and a combination of compatibilizing resins and curatives. This combination showed a drastic improvement in blends properties and once again the optimum ratio of compatibilizing resins seemed to depend on the ratio of DRT/PP. As a result of the work, successful strategies based on reactive compatibilization techniques were developed in order to prepare useful TPVs having up to 70% DR. A series of compatibilization techniques has been evaluated using design of experiments and various characterization techniques such as mechanical tests, scanning electron microscopy, thermal analysis and crosslink density measurements. This led to the development of a formulation, which could improve the blend properties significantly. A tensile strength of around 10 MPa and an elongation-at-break of 150-180 % could be achieved for devulcanized rubber (70%) based TPVs, which has broadened the scope for its commercial applications. In addition to that, the process was established on a TSE that has enabled a continuous and steady production of these TPVs with reasonable throughputs.
44

Dielelektrische Charakterisierung rußgefüllter Elastomere

Kastner, Andreas Unknown Date (has links)
Techn. Univ., Diss., 2002--Darmstadt
45

Modeling Flashover of AC Outdoor Insulators under Contaminated Conditions with Dry Band Formation and Arcing

January 2012 (has links)
abstract: This paper presents a theoretical model for evaluating flashover performance of insulators under contaminated conditions. The model introduces several new features when compared with existing models such as, the formation of dry bands, variations in insulator geometry and surface wettability. The electric field distribution obtained from software for 3-Dimensional models along with form factor are used to determine the dimensions of the dry bands and the onset of arcing. The model draws heavily from experimental measurements of flashover voltage and surface resistance under wet conditions of porcelain and composite insulators. The model illustrates the dominant role played by the insulator shape and housing material on the flashover performance. / Dissertation/Thesis / M.S. Electrical Engineering 2012
46

Enhancing wave energy deployments through mooring system reliability assessment

Gordelier, Tessa Jane January 2016 (has links)
Wave energy generation is a promising renewable energy source but it faces certain challenges before it can become commercially viable. In comparison to conventional energy generation it is expensive, furthermore it has been plagued by reliability challenges due to the harsh operating demands of the marine environment. This Thesis investigates the reliability of wave energy devices, and specifically focuses on mooring system reliability. Two major themes are developed: Firstly, an assessment is conducted on a conventional mooring component, reviewing safety factors suggested in mooring system design guidelines and investigating whether there is a potential to reduce these safety factors (and in so doing, reduce system costs). Numerical modelling, laboratory testing and field testing demonstrate that excessively large safety factors are published in design guidance for static loading scenarios. However, when considering fatigue loading regimes (a critical aspect of wave energy generation), the proposed safety factors are found to be appropriate. In fatigue design, the importance of selecting an appropriate stress concentration factor for use with generic S-N curves is highlighted. These findings indicate the publication of additional stress concentration factors and a standard approach for mean stress adjustment would be a valuable addition to mooring system design guidance for fatigue. The second theme introduces a novel mooring component, The Exeter Tether, designed to reduce mooring loads and thus reduce system costs. The introduction of any novel technology brings new reliability considerations, and a reliability assessment of the tether and sub-components is presented in this Thesis. Following a failure modes and effects analysis, a bespoke range of physical tests is developed to investigate reliability concerns unique to this novel component. Laboratory testing of the tether assembly shows promising fatigue performance, however field trials highlight concerns regarding bio-fouling and marine debris ingress. Sub-component testing of the EPDM (Ethylene propylene diene monomer) polymer core suggests an increase in material stiffness with both marine ageing and repeated compression cycles. This finding supports results from assembly trials in the laboratory and at sea, where tether assembly dynamic axial stiffness is observed to increase over time. The overarching design philosophy behind the Exeter Tether is to reduce mooring system loads, so establishing the `worked' operating profile of the tether is crucial for the design intentions to be realised without compromising the reliability of the overall mooring system. Trials on the anti-friction membrane establish optimum performance when using two layers of UHMWPE (Ultra high molecular weight polyethylene) tape. Further areas requiring research are highlighted, and suggestions are made to improve the reliability of future design iterations of The Exeter Tether. The two reliability approaches presented demonstrate the potential for cost reduction in mooring system design and highlight the importance of physical component testing, both in the field and in laboratory conditions, to optimise component design whilst ensuring overall system reliability.
47

Porovnání vlastností dvou výrobků pro umělá kluziště na bázi kaučuku etylén-propylen-dien / Properties comparison of two products used for skating rink based on ehtylene-propylene-dien rubber

Kostková, Jana January 2015 (has links)
This master thesis deals with characterization of two black and white products based on ethylene-propylene-diene rubber (EPDM) used for skating rink. Products marked with A and are different in their diameter of circular tubes trough which cooling medium passes and also in the distance of these tubes. Both of materials were characterized in order to determine whether it is the EPDM and how are they different. The characterization methods were used: differential scanning calorimetry, thermogravimetric analysis, attenuated total reflectance Fourier transform infrared spectroscopy, tensile test, swelling test, thermooxidative test. The composition of both materials, including fillers and others additives is almost the same but difference is in structure of EPDM and probably also in interaction with fillers, what exhibits different mechanical properties, thermooxidative stability and thermal capacity. These differences which have been found are essential for long-term use properties of both materials.
48

Identification of Swelling cause on Rubber Gaskets / Svällningsorsak i EPDM gummipackningar

Fagerland, Jenny January 2011 (has links)
The aim of this master thesis was to develop an analysis method which identifies the swelling cause of EPDM rubber gaskets. The method shall facilitate failure investigation of rubber gaskets used in plate heat exchangers which require both determinations of volatile and involatile compounds as well as polar and non-polar compounds. To achieve this goal a combination analysis method of Headspace Gas chromatography Mass spectrometry (GC-MS) and liquid-liquid extraction Fourier Transform Infrared spectroscopy (FT-IR) was chosen. Three extraction fluids were tested to extract the compounds from the EPDM rubber: tetrahydrofuran, 2-propanol and supercritical carbon dioxide. The analysis method was first tested on EPDM rubber samples swelled in four known solvents with different volatility and polarity (hexane, acetic acid, 1-octanol and pentadecane). Then it was tested on EPDM rubber samples swelled in three different mixtures of these four solvents and finally on two EPDM gaskets, swelled by unknown media, that were being assessed in an actual failure investigations. The analysis method was successful in identifying compounds which caused EPDM rubber gaskets to swell but not in a way as it was supposed to. The FT-IR analysis could not be used to identify compounds in a mixture because the spectra of mixtures are very difficult to analyze. However the FT-IR results complimented the results from the GC-MS analysis which due to a poor search database was not good enough to determine the exact composition of the swelling agents by itself. The liquid extraction also gave useful information about how much swelling agents that were absorbed by the EPDM gasket. Tetrahydrofuran and 2-propanol were the most effective for extraction of the solvents. However, supercritical carbon dioxide was very good for selective extraction of non-polar compounds. The method detected both polar and non-polar compounds but non-polar compounds with low boiling point were not detected. It did not interact strongly enough with the GC-column used in this trials, because the polarity of the column was not sufficient. The method detects both volatile and involatile compounds. But to be sure that all volatile swelling agents were detected a special sample handling technique must be developed. To improve the analysis method it is suggested that the method is developed so that only GC-MS analysis is needed. This is accomplished by further GC-MS analysis with other GC-columns and better search databases. It is also suggested that the method is developed so that it is not only a qualitative analysis method but also a quantitative analysis method.  In that way it can be used as a much more effective tool during failure investigations. / Syftet med det här examensarbetet var att ta fram en analysmetod för att identifiera svällningsorsaker i EPDM gummipackningar. Metoden utvecklades för att underlätta haveriutredningar av havererade gummipackningar använda i plattvärmeväxlare. Kraven man kan ställa på en sådan metod är att den har ett brett detektionsområde där både polära och opolära föreningar samt lättflyktiga och svårflyktiga föreningar kan analyseras. För att uppnå dessa krav utvecklades en analysmetoden som bestod av en kombination av headspace Gas Kromatografi-Masspektrometri (GC-MS) och vätske-vätske extraktion Fourier Transform-Infraröd spektroskopi (FT-IR). Tre olika extraktionsvätskor testades för att extrahera ut de ämnena som svällt EPDM gummipackningen (2-propanol, tetrahydrofuran och superkritisk koldioxid). Analysmetoden testades först på EPDM packningar som svällt i fyra olika kända lösningsmedel med varierande kokpunkt och polaritet (hexan, ättiksyra, 1-oktanol och pentadecane). Därefter testades metoden på EPDM packningar som svällt i blandningar av dessa kända lösningsmedel och slutligen testades metoden på två EPDM packningar som havererat i plattvärmeväxlare.   Resultaten visade att analysmetoden fungerade för att identifiera ämnen som orsakat svällning i EPDM packningar men inte på det sätt som metoden från början var tänkt att fungera. FT-IR kan inte användas för att analysera de ämnen som inte detekteras med GC-MS. Detta beror framför allt på att det är väldigt svårt att identifiera ämnen i blandningar med FT-IR. Det visade sig dock att resultaten från FT-IR kunde användas för att komplettera resultaten från GC-MS (som var för dåliga på grund av en dålig sökdatabas). Resultaten från vätske-vätske extraktionen gav även användbar information om hur mycket ämnen som absorberats av packningen. Av de tre extraktions vätskor som testades var 2-propanol och tetrahydrofuran mest effektiva för att få ut de ämnen som svällt EPDM packningen. Den superkritiska koldioxiden var inte alls lika effektiv men var och andra sidan bättre om en mer selektiv extraktion av opolära ämnen önskades.   Analysmetoden detekterade både polära och opolära ämnen men opolära ämnen med låg kokpunkt detekterades inte. För att dessa ämnen ska detekteras måste en annan sorts kolonn med mer opolär stationärfas användas i GC-MS. Metoden detekterar även lättflyktiga och svårflyktiga ämnen. Men för att vara säker på att samtliga lättflyktiga ämnen som har orsakat svällningen i EPDM packningen detekteras måste en särskild provhanteringsmetod utvecklas. Detta för att säkerställa att inga ämnen lämnat packningen innan analys av EPDM packningen.   För att förbättra analysmetoden ytterligare föreslås att metoden utvecklas så att den enbart kan genomföras med GC-MS. Detta bör göras genom fler GC-MS analyser med andra sorters kolonner samt med andra bättre sökdatabaser. Det föreslås även att metoden utvecklas så att den förutom kvalitativ bestämning av ämnen som orsakat svällning även kvantitativ bestämma sammansättningen av ämnen i EPDM packningen. På så sätt fås ett ännu bättre analysverktyg vid framtida haveriutredningar.
49

Reinforcement of Ethylene Propylene Rubber (EPR) and Ethylene Propylene Diene Rubber (EPDM) by Zinc Dimethacrylate

Wysocki, Clare L. 17 May 2006 (has links)
No description available.
50

The Curing and Degradation Kinetics of EPDM Rubber

Wehrle, Robert J. January 2014 (has links)
No description available.

Page generated in 0.0511 seconds