• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • Tagged with
  • 14
  • 9
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Détermination par approche transgénique du rôle de gênes de guidance axonale, les éphrines, dans le développement du néocortex cérébral

Depaepe, Vanessa 30 November 2005 (has links)
Les ephrines et leurs récepteurs Eph constituent une famille multigénique de facteurs de guidage cellulaire et axonal. Ces facteurs jouent un rôle-clé dans l’établissement de cartes neurales topographiques, notamment au niveau des connexions thalamocorticales, réseau neuronal majeur du cerveau des mammifères.<p><p>Notre projet visait initialement à étudier l’implication des ephrines corticales dans la génèse des connexions thalamocorticales par une approche de gain de fonction. Pour ce faire, nous avons généré des souris transgéniques présentant une expression ectopique spécifique de l’ephrine-A5 dans le cortex en développement, en utilisant une technique de transgénèse d’addition par chromosome artificiel de bactéries (BAC). <p><p>De façon surprenante, l’analyse de ces souris nous a révélé que les ephrines, à côté de leurs rôles classiques de facteurs de guidage, influençaient la taille du cortex cérébral en régulant l’apoptose des progéniteurs neuronaux. En effet, nous avons pu montrer que l’expression ectopique du ligand ephrine-A5 par les progéniteurs corticaux exprimant son récepteur EphA7 résultait en une déplétion précoce en progéniteurs corticaux par apoptose, et une diminution subséquente de la taille du cortex. Cette vague apoptotique est observée en l’absence de toute altération détectable de la prolifération, la différenciation et la migration neurale dans le cortex.<p><p>Nous avons étayé notre étude in vivo par des expériences in vitro, qui ont montré que l’ephrine-A5 recombinante était capable d’induire rapidement la mort des progéniteurs neuronaux dissociés. Nous avons également montré que cette mort cellulaire impliquait l’activation de la caspase-3, confirmant ainsi l’effet direct des ephrines et de leurs récepteurs sur une ou plusieurs cascades apoptotiques. Par contre, la stimulation des neurones post-mitotiques corticaux par l’ephrine-A5 est accompagnée d’une activation de la caspase-3 sans mort cellulaire apparente. La signalisation ephrine/Eph induirait donc l’activation de la caspase-3 dans différents types cellulaires, sans que celle-ci ne soit systématiquement le reflet d’une mort cellulaire programmée. <p><p>Parallèlement, afin d’évaluer l’importance physiologique de cette voie pro-apoptotique dépendante des ephrines, nous avons étudié des souris présentant une perte de fonction du récepteur EphA7. L’analyse de ces mutants nous a permis de mettre en évidence une diminution de l’apoptose des progéniteurs corticaux, une augmentation de la taille du cortex, ainsi qu’une hypercroissance exencéphalique de tout le cerveau antérieur dans les cas les plus extrêmes. Ces observations indiquent donc que les ephrines sont nécessaires au contrôle de la mort cellulaire programmée des progéniteurs du cortex cérébral. Nous avons également observé le même phénotype exencéphalique dans des mutants déficients en ephrines-A2, -A3 et -A5, dont l’analyse préliminaire suggère également des défauts de processus apoptotiques. <p><p>Nos diverses expériences, combinant une approche par gain et perte de fonction, à la fois in vivo et in vitro, ont ainsi permis de proposer un nouveau rôle des ephrines en marge de leur implication dans la guidance axonale, à savoir un rôle dans le contrôle de la taille cérébrale par induction de l’apoptose des progéniteurs corticaux.<p>La mise en évidence de cette nouvelle voie de signalisation pro-apoptotique pourrait avoir des implications importantes dans d’autres aspects de la biologie du développement et des cellules souches, ainsi que dans l’oncogénèse. <p> / Doctorat en sciences biomédicales / info:eu-repo/semantics/nonPublished
12

Implication of EphA4 in circadian and sleep physiology studied using transcriptional and pharmacological approaches

Ballester Roig, Maria Neus 08 1900 (has links)
Le sommeil est un comportement qui occupe un tiers de notre vie. L'horaire, la durée, et la qualité du sommeil sont contrôlés par deux processus principaux : la régulation homéostatique du sommeil et l’horloge qui synchronise les rythmes circadiens internes. EPHA4 est une molécule d'adhésion cellulaire qui régule la neurotransmission et qui est exprimée dans des régions cérébrales impliquées dans la régulation circadienne et du sommeil. De manière intéressante, le gène EphA4 contient des éléments régulateurs des facteurs de transcription circadiens et les souris Clock mutantes voient leur expression d’EphA4 modifiée. De plus, les souris EphA4 knockout (KO) ont des rythmes circadiens d’activité locomotrice anormaux, moins de sommeil paradoxal dans la période de lumière, et une distribution des oscillations cérébrales du sommeil modifiée sur un cycle de 24 heures. Par conséquent, et étant donné que EPHA4 est crucial pour le neurodéveloppement, il convient d’explorer si les phénotypes du sommeil/circadiens observés chez les souris EphA4 KO proviennent d'effets sur le développement ou des rôles d'EPHA4 dans la fonction neuronale adulte. Par ailleurs, les mécanismes de régulation transcriptionnelle d'EphA4 sont encore méconnus. Dans cette thèse, nous avons émis les hypothèses que i) l'expression du gène EphA4 ou de leurs ligands Éphrines (Efns) est régulée de manière circadienne ; et ii) que le modulateur de l’activité d’EPHA4 rhynchophylline (RHY) modifie le sommeil chez les souris adultes d'une manière qui ressemble au phénotype EphA4 KO. L'étude I montre que les facteurs de transcription de l’horloge (CLOCK/NPAS2 et BMAL1) activent la transcription via les éléments de réponse à l'ADN «boîtes E» trouvées dans les promoteurs putatifs d'EphA4, EfnB2 et EfnA3 in vitro. Cependant, les protéines EPHA4 et EFNB2 n’ont pas montré une oscillation circadienne dans le cortex préfrontal et les noyaux suprachiasmatiques (horloge principale) de souris. Dans le projet II, l'effet de RHY sur le sommeil a été étudié chez des souris mâles et femelles avec des enregistrements electroencéphalographiques. Nos données ont démontré que RHY prolonge le sommeil à onde lente, mais les effets sur le sommeil paradoxal dépendent de l’heure d’injection. RHY modifie aussi les oscillations cérébrales pendant l’éveil et le sommeil. Tous ces effets sont notablement plus marqués chez les femelles, ce qui souligne l’importance d’étudier les deux sexes lors des essais pharmacologiques. La transcriptomique spatiale cérébrale révèle que RHY modifie des transcrits liés à des réponses d’inflammation dans tout le cerveau, mais qu'elle affecte l'expression génique des neuropeptides associés à la régulation du sommeil et hypophysaires particulièrement dans l’hypothalamus. En outre, RHY affecte l'expression des gènes de la transcription/traduction de manière diffèrent selon l’heure d’injection. La première publication met en évidence que la régulation transcriptionnelle d’EphA4 et des Efns pourraient expliquer quelques-uns des phénotypes observés chez les souris KO. La deuxième publication démontre que RHY induit le sommeil chez la souris et souligne l’importance de caractériser des mécanismes inexplorés sous-jacents aux composés naturels. Décrire la régulation moléculaire du sommeil peut apporter des éclairages utiles pour la chronopharmacologie. / Sleep is a behavior which occupies a third of our lifetime. The schedule, the duration and the quality of sleep are controlled by two main processes: the homeostatic sleep regulation and the clock that synchronizes the internal circadian rhythm. EPHA4 is a cell adhesion molecule regulating neurotransmission and is expressed in brain centers regulating sleep and circadian rhythms. Interestingly, the EphA4 gene contains regulatory elements for circadian transcription factors, and Clock mutant mice have altered EphA4 expression. Moreover, EphA4 knockout mice (KO) have abnormal circadian rhythms of locomotor activity, less paradoxical sleep in the light period and altered sleep brain oscillations across the 24 hours. Given that EPHA4 is crucial for development, it should be investigated whether the sleep/circadian phenotypes observed in EphA4 KO originate from developmental effects or from roles of EPHA4 in adult neuronal function. Moreover, very little is known about the transcriptional regulation of EPHA4. Thus, the hypotheses of this thesis were that i) the gene expression of EphA4 or that of its ligands Ephrins (Efns) is regulated in a circadian manner; and ii) that the modulator of EPHA4 activity rhynchophylline (RHY) modifies sleep in adult mice in manners that resemble the EphA4 KO phenotype. Project I demonstrates that the clock transcription factors (CLOCK/NPAS2 et BMAL1) activate transcription via the DNA regulatory elements “E-boxes” found in the putative promoters of EphA4, EfnB2 and EfnA3 in vitro. Nevertheless, EPHA4 and EFNB2 proteins did not show a circadian oscillation in the mouse prefrontal cortex and suprachiasmatic nuclei (master clock). In project II, the effect of RHY on sleep was studied in male and female mice with electroencephalographic recordings. RHY extends slow wave sleep and effects on paradoxical sleep depended on the time-of-injection. RHY also modified the brain oscillations during wakefulness and sleep. Importantly, all these effects were larger in females, which highlights the need to consider both sexes in pharmacological studies. Brain spatial transcriptomics reveals that RHY modifies transcripts linked to inflammatory responses throughout the brain, while it affects transcripts linked to sleep regulation and pituitary responses particularly in the hypothalamus. Moreover, RHY affected the expression of genes for transcription/translation differently depending on the time of injection. The first publication underscores that the transcriptional regulation of EphA4 and Efns may underly some of the phenotypes observed in the KO mice. The second publication demonstrates that RHY induces sleep in mice, that it modifies brain activity associated to cognitive processes and highlights the importance of characterizing unexplored mechanisms of natural compounds. Describing the molecular regulation of sleep may provide useful insights for chronopharmacology.
13

Rôle du récepteur EphA4 dans la plasticité structurale neurono-gliale du noyau supraoptique à la suite d’un régime à l’eau salée

Isacu, Daniella 05 1900 (has links)
Les noyaux supraoptiques (NSO) et paraventriculaires (NPV) de l’hypothalamus montrent un phénomène réversible de plasticité structurale neurono-gliale dans diverses conditions physiologiques telles que la parturition, l’allaitement ou lors d’une surcharge en sel. En effet, les feuillets astrocytaires qui enveloppent normalement les somas et dendrites des neurones à ocytocine (OT) ou à vasopressine (AVP) se rétractent alors, autour des neurones à OT, laissant place à la formation de nouvelles synapses, surtout GABAergiques. Nous avons émis l’hypothèse voulant que ces mouvements cellulaires soient régulés par des molécules connues pour leurs rôles dans l’adhérence et la motilité cellulaires, notamment les récepteurs Eph et les éphrines (Efn). Nous avons étudié le rôle de l’un de ces récepteurs, EphA4, un récepteur à tyrosine kinase reconnaissant l’ensemble des Efn, A ou B, puis tenté d’identifier les Efn partenaires dans le NSO, à la suite d’une surcharge en sel. Pour démontrer la présence d’EphA4 dans le NSO et déterminer l’effet d’une surcharge en sel sur son expression et sa localisation, nous avons utilisé l’hybridation in situ et l’immunohistochimie en microscopie électronique, sur des coupes de cerveaux de souris ou rats traités ou non à l’eau salée pendant 1-7 j, avec des ribosondes ou des anticorps spécifiques pour EphA4. Ces travaux ont démontré une augmentation de l’expression d’EphA4 dans le NSO, notamment dans des dendrites, après le régime salé. La distribution de cette expression correspondait à celle des neurones OT et était absente de la glia limitans. Nous avons ensuite déterminé l’effet d’une absence d’EphA4 sur les mouvements astrocytaires et la synaptogènese autour des dendrites à OT et AVP, en utilisant des souris EphA4 knockouts et des souris de type sauvage des mêmes portées. Nous avons ainsi mesuré la couverture astrocytaire des dendrites OT ou AVP, identifiées par immunocytochimie anti-OT ou anti-AVP, en microscopie électronique. Ces mesures ont confirmé la rétraction des feuillets astrocytaires et la synaptogenèse autour des dendrites OT, mais pas autour des dendrites AVP, chez les souris de type sauvage, et démontré que la rétraction des feuillets astrocytaires et la synaptogenèse sur les dendrites OT ne se produisait pas chez les souris knockouts soumises à la surcharge en sel. L’ensemble de ces résultats démontre un rôle d’EphA4 dans cette plasticité structurale neurono-gliale. Afin d’identifier l’Efn partenaire d’EphA4 dans cette fonction, nous avons utilisé l’hybridation in situ et l’immunohistochimie pour les EfnB3 et -A3. L’hybridation in situ n’a pas démontré d’expression de l’EfnB3 dans le NSO, tandis que les résultats pour l’EfnA3 restent à quantifier. Cependant, l’immunohistochimie anti-EfnA3 montre un marquage d’astrocytes dans le NSO et la glia limitans, marquage qui semble augmenter après surcharge en sel, mais il reste à démontrer que l’anticorps anti-EfnA3 est bien spécifique et à quantifier les éventuels changements sur un plus grand nombre d’animaux. L’ensemble de ces observations démontre un rôle du récepteur EphA4 dans les mécanismes à la base des changements structuraux neurono-gliaux du NSO et pointe vers l’EfnA3 comme partenaire d’EphA4 dans ce modèle. / The supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus display reversible neurono-glial structural plasticity in various physiological conditions, such as parturition, lactation, or following salt loading. In such conditions, astrocytic leaflets that normally envelop the somas and dendrites of ocytocin (OT) or arginin-vasopressin (AVP) neurons retract from OT processes where they are replaced by new synapses, mainly GABAergic. Our hypothesis proposes that these cellular movements are regulated by molecules known for their roles in cell adhesion and motility, notably Eph receptors and ephrins (Efn). We have examined the role of one of these receptors, EphA4, a tyrosine-kinase receptor recognizing all ephrins, A or B, and then tried to identify the Efn interacting with EphA4 in these functions, following salt-loading. To demonstrate the presence of EphA4 in the SON and determine the effect of salt loading on its expression, we used in situ hybridization and immunohistochemistry in light and electron microscopy, on brain sections from rats or mice treated with salted water during 1-7 d, using riboprobes and antibodies specific for EphA4. These experiments demonstrated that EphA4 is expressed in the SON, with a distribution of its mRNA similar to that of OT neurons, and that it was absent from the glia limitans. Its expression increased following salt loading, particularly in dendrites. We then tested the effect of an absence of EphA4 on astrocytic process retraction and on synaptogenesis, using EphA4 kockout mice and wild-type littermates. We measured the ratio of astrocytic contact, and counted the number of synapses on the circumference of OT and AVP dendrites, identified in electron microscopy by immunocytochemistry, after 7 d of salt loading. The results confirmed the retraction of astrocytic processes from OT dendrites in wild-type animals after salt loading, and no change around AVP dendrites. However, there was no retraction from OT dendrites in EphA4 knockout mice, following salt loading. Altogether, these results constitute strong evidence for a role of EphA4 in the astrocyte leaflet retraction and accompanying synaptogenesis, specifically around OT dendrites. In order to identify the Efn interacting with EphA4 in this function, we used in situ hybridization and immunohistochemistry for EfnB3 and –A3. The in situ hybridization did not show the presence of EfnB3 in the SON, while the results for EfnA3 are currently being quantified. Nevertheless, anti-EfnA3 immunohistochemistry showed labelling in astrocytes and in the glia limitans of the SON, a labelling that seemed to increase following salt loading, although the specificity of the anti-EfnA3 antibody remains to be demonstrated on EfnA3 knockout mice, and its expression requires to be measured on a larger number of mice. The latter observations indicate EfnA3 as the potential partner (receptor/ligand) for EphA4 in the neurono-glial structural plasticity occurring in the SON following salt loading.
14

Rôle du récepteur EphA4 dans la plasticité structurale neurono-gliale du noyau supraoptique à la suite d’un régime à l’eau salée

Isacu, Daniella 05 1900 (has links)
Les noyaux supraoptiques (NSO) et paraventriculaires (NPV) de l’hypothalamus montrent un phénomène réversible de plasticité structurale neurono-gliale dans diverses conditions physiologiques telles que la parturition, l’allaitement ou lors d’une surcharge en sel. En effet, les feuillets astrocytaires qui enveloppent normalement les somas et dendrites des neurones à ocytocine (OT) ou à vasopressine (AVP) se rétractent alors, autour des neurones à OT, laissant place à la formation de nouvelles synapses, surtout GABAergiques. Nous avons émis l’hypothèse voulant que ces mouvements cellulaires soient régulés par des molécules connues pour leurs rôles dans l’adhérence et la motilité cellulaires, notamment les récepteurs Eph et les éphrines (Efn). Nous avons étudié le rôle de l’un de ces récepteurs, EphA4, un récepteur à tyrosine kinase reconnaissant l’ensemble des Efn, A ou B, puis tenté d’identifier les Efn partenaires dans le NSO, à la suite d’une surcharge en sel. Pour démontrer la présence d’EphA4 dans le NSO et déterminer l’effet d’une surcharge en sel sur son expression et sa localisation, nous avons utilisé l’hybridation in situ et l’immunohistochimie en microscopie électronique, sur des coupes de cerveaux de souris ou rats traités ou non à l’eau salée pendant 1-7 j, avec des ribosondes ou des anticorps spécifiques pour EphA4. Ces travaux ont démontré une augmentation de l’expression d’EphA4 dans le NSO, notamment dans des dendrites, après le régime salé. La distribution de cette expression correspondait à celle des neurones OT et était absente de la glia limitans. Nous avons ensuite déterminé l’effet d’une absence d’EphA4 sur les mouvements astrocytaires et la synaptogènese autour des dendrites à OT et AVP, en utilisant des souris EphA4 knockouts et des souris de type sauvage des mêmes portées. Nous avons ainsi mesuré la couverture astrocytaire des dendrites OT ou AVP, identifiées par immunocytochimie anti-OT ou anti-AVP, en microscopie électronique. Ces mesures ont confirmé la rétraction des feuillets astrocytaires et la synaptogenèse autour des dendrites OT, mais pas autour des dendrites AVP, chez les souris de type sauvage, et démontré que la rétraction des feuillets astrocytaires et la synaptogenèse sur les dendrites OT ne se produisait pas chez les souris knockouts soumises à la surcharge en sel. L’ensemble de ces résultats démontre un rôle d’EphA4 dans cette plasticité structurale neurono-gliale. Afin d’identifier l’Efn partenaire d’EphA4 dans cette fonction, nous avons utilisé l’hybridation in situ et l’immunohistochimie pour les EfnB3 et -A3. L’hybridation in situ n’a pas démontré d’expression de l’EfnB3 dans le NSO, tandis que les résultats pour l’EfnA3 restent à quantifier. Cependant, l’immunohistochimie anti-EfnA3 montre un marquage d’astrocytes dans le NSO et la glia limitans, marquage qui semble augmenter après surcharge en sel, mais il reste à démontrer que l’anticorps anti-EfnA3 est bien spécifique et à quantifier les éventuels changements sur un plus grand nombre d’animaux. L’ensemble de ces observations démontre un rôle du récepteur EphA4 dans les mécanismes à la base des changements structuraux neurono-gliaux du NSO et pointe vers l’EfnA3 comme partenaire d’EphA4 dans ce modèle. / The supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus display reversible neurono-glial structural plasticity in various physiological conditions, such as parturition, lactation, or following salt loading. In such conditions, astrocytic leaflets that normally envelop the somas and dendrites of ocytocin (OT) or arginin-vasopressin (AVP) neurons retract from OT processes where they are replaced by new synapses, mainly GABAergic. Our hypothesis proposes that these cellular movements are regulated by molecules known for their roles in cell adhesion and motility, notably Eph receptors and ephrins (Efn). We have examined the role of one of these receptors, EphA4, a tyrosine-kinase receptor recognizing all ephrins, A or B, and then tried to identify the Efn interacting with EphA4 in these functions, following salt-loading. To demonstrate the presence of EphA4 in the SON and determine the effect of salt loading on its expression, we used in situ hybridization and immunohistochemistry in light and electron microscopy, on brain sections from rats or mice treated with salted water during 1-7 d, using riboprobes and antibodies specific for EphA4. These experiments demonstrated that EphA4 is expressed in the SON, with a distribution of its mRNA similar to that of OT neurons, and that it was absent from the glia limitans. Its expression increased following salt loading, particularly in dendrites. We then tested the effect of an absence of EphA4 on astrocytic process retraction and on synaptogenesis, using EphA4 kockout mice and wild-type littermates. We measured the ratio of astrocytic contact, and counted the number of synapses on the circumference of OT and AVP dendrites, identified in electron microscopy by immunocytochemistry, after 7 d of salt loading. The results confirmed the retraction of astrocytic processes from OT dendrites in wild-type animals after salt loading, and no change around AVP dendrites. However, there was no retraction from OT dendrites in EphA4 knockout mice, following salt loading. Altogether, these results constitute strong evidence for a role of EphA4 in the astrocyte leaflet retraction and accompanying synaptogenesis, specifically around OT dendrites. In order to identify the Efn interacting with EphA4 in this function, we used in situ hybridization and immunohistochemistry for EfnB3 and –A3. The in situ hybridization did not show the presence of EfnB3 in the SON, while the results for EfnA3 are currently being quantified. Nevertheless, anti-EfnA3 immunohistochemistry showed labelling in astrocytes and in the glia limitans of the SON, a labelling that seemed to increase following salt loading, although the specificity of the anti-EfnA3 antibody remains to be demonstrated on EfnA3 knockout mice, and its expression requires to be measured on a larger number of mice. The latter observations indicate EfnA3 as the potential partner (receptor/ligand) for EphA4 in the neurono-glial structural plasticity occurring in the SON following salt loading.

Page generated in 0.0501 seconds