• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conformable Skin Electronics Based on Spiral Pattern

January 2015 (has links)
abstract: Skin electronics is one of the most promising applications of stretchable electronics. The versatility of skin electronics can only be guaranteed when it has conformal contact with human skin. While both analytical and numerical solutions for contact between serpentine interconnects and soft substrate remain unreported, the motivation of this thesis is to render a novel method to numerically study the conformability of the serpentine interconnects. This thesis explained thoroughly how to conduct finite element analysis for the conformability of skin electronics, including modeling, meshing method and step setup etc.. User-defined elements were implemented to the finite element commercial package ABAQUS for the analysis of conformability. With thorough investigation into the conformability of Fermat’s spiral, it has been found that the kirigami based pattern exhibits high conformability. Since thickness is a key factor to design skin electronics, the thesis also talked about how the change of thickness of the skin electronics impacts on the conformability. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2015
2

Silky Soft Bioelectronics

Menke, Maria Ann 17 November 2022 (has links)
No description available.
3

Soft Intelligence : Liquids Matter in Compliant Microsystems

Jeong, Seung Hee January 2016 (has links)
Soft matter, here, liquids and polymers, have adaptability to a surrounding geometry. They intrinsically have advantageous characteristics from a mechanical perspective, such as flowing and wetting on surrounding surfaces, giving compliant, conformal and deformable behavior. From the behavior of soft matter for heterogeneous surfaces, compliant structures can be engineered as embedded liquid microstructures or patterned liquid microsystems for emerging compliant microsystems. Recently, skin electronics and soft robotics have been initiated as potential applications that can provide soft interfaces and interactions for a human-machine interface. To meet the design parameters, developing soft material engineering aimed at tuning material properties and smart processing techniques proper to them are to be highly encouraged. As promising candidates, Ga-based liquid alloys and silicone-based elastomers have been widely applied to proof-of-concept compliant structures. In this thesis, the liquid alloy was employed as a soft and stretchable electrical and thermal conductor (resistor), interconnect and filler in an elastomer structure. Printing-based liquid alloy patterning techniques have been developed with a batch-type, parallel processing scheme. As a simple solution, tape transfer masking was combined with a liquid alloy spraying technique, which provides robust processability. Silicone elastomers could be tunable for multi-functional building blocks by liquid or liquid-like soft solid inclusions. The liquid alloy and a polymer additive were introduced to the silicone elastomer by a simple mixing process. Heterogeneous material microstructures in elastomer networks successfully changed mechanical, thermal and surface properties. To realize a compliant microsystem, these ideas have in practice been useful in designing and fabricating soft and stretchable systems. Many different designs of the microsystems have been fabricated with the developed techniques and materials, and successfully evaluated under dynamic conditions. The compliant microsystems work as basic components to build up a whole system with soft materials and a processing technology for our emerging society.
4

Low Cost Manufacturing of Wearable and Implantable Biomedical Devices

Behnam Sadri (8999030) 16 November 2020 (has links)
Traditional fabrication methods used to manufacture biosensors for physiological, therapeutics, or health monitoring purposes are complex and rely on costly materials, which has hindered their adoption as single-use medical devices. The development of a new kind of wearable and implantable electronics relying on inexpensive materials for their manufacturing will pave the way towards the ubiquitous adoption of sticker-like health tracking devices.<div>One of growing and most promising applications for biosensors is the continuous health monitoring using mechanically soft, stretchable sensors. While these healthcare devices showed an excellent compatibility with human tissues, they still need highly trained personnel to perform multi-step, prolonged fabrication for several functioning layers of the device. In this dissertation, I propose low-cost, scalable, simple, and rapid manufacturing techniques to fabricate multifunctional epidermal and implantable sensors to monitor a range of biosignals including heart, muscle, or eye activity to characterizing of biofuids such as sweat. I have also used these devices as an implant to provide heat therapy for muscle regeneration and optical stimulation of neurons using optogenetics. These devices have also combined with those of triboelectric<br>nanogenerators to realize self-powered sensors for monitoring imperceptible mechanical biosignals such as respiratory and pulse rate.</div><div>Food health and safety has also emerged as another important frontier to develop biosensors and improve the human health and quality of life. The recent progresses on detecting microbial activity inside foods or their packages rely on development of highly functional materials. The existing materials for fabrication of food sensors, however,<br>are often costly and toxic for human health or the environment. In this dissertation, I proposed biocompatible food sensors using protein/PCL microfibers to reinforce the protein microfibrous structure in humid conditions and exploit their excellent hygroscopic properties to sense biogenic gas, as an indicator for early detection of food spoilage. Finally, my battery-free food sensors are capable of monitoring food safety with no need of extra measurement devices. Collectively, this dissertation proposes cost-effective solutions to solve human health issues, enabled by developing low-cost, functional materials and exploiting simple fabrication techniques.<br></div>

Page generated in 0.0623 seconds