Spelling suggestions: "subject:"epithelial cells."" "subject:"pithelial cells.""
431 |
Toll-like receptor-mediated responses of primary intestinal epithelial cells during the development of colitisSingh, J.C.I., Cruickshank, S.M., Newton, D.J., Wakenshaw, L., Graham, Anne M, Lan, J., Lodge, J.P.A., Felsburg, P.J., Carding, S.R. January 2004 (has links)
No / The interleukin-2-deficient (IL-2¿/¿) mouse model of ulcerative colitis was used to test the hypothesis that colonic epithelial cells (CEC) directly respond to bacterial antigens and that alterations in Toll-like receptor (TLR)-mediated signaling may occur during the development of colitis. TLR expression and activation of TLR-mediated signaling pathways in primary CEC of healthy animals was compared with CEC in IL-2¿/¿ mice during the development of colitis. In healthy animals, CEC expressed functional TLR, and in response to the TLR4 ligand LPS, proliferated and secreted the cytokines IL-6 and monocyte chemoattractant protein-1 (MCP-1). However, the TLR-responsiveness of CEC in IL-2¿/¿ mice was different with decreased TLR4 responsiveness and augmented TLR2 responses that result in IL-6 and MCP-1 secretion. TLR signaling in CEC did not involve NF-B (p65) activation with the inhibitory p50 form of NF-B predominating in CEC in both the healthy and inflamed colon. Development of colitis was, however, associated with the activation of MAPK family members and upregulation of MyD88-independent signaling pathways characterized by increased caspase-1 activity and IL-18 production. These findings identify changes in TLR expression and signaling during the development of colitis that may contribute to changes in the host response to bacterial antigens seen in colitis.
|
432 |
DNA dioxygenases Tet2/3 regulate gene promoter accessibility and chromatin topology in lineage-specific loci to control epithelial differentiationChen, G-D., Fatima, I., Xu, Q,, Rozhkova, E., Fessing, Michael Y., Mardaryev, Andrei N., Sharov, A.A., Xu, G-L., Botchkarev, Vladimir A. 11 January 2023 (has links)
Yes / Execution of lineage-specific differentiation programs requires tight coordination between many regulators including Ten-eleven translocation (TET) family enzymes, catalyzing 5-methylcytosine oxidation in DNA. Here, by using Keratin 14–Cre–driven ablation of Tet genes in skin epithelial cells, we demonstrate that ablation of Tet2/Tet3 results in marked alterations of hair shape and length followed by hair loss. We show that, through DNA demethylation, Tet2/Tet3 control chromatin accessibility and Dlx3 binding and promoter activity of the Krt25 and Krt28 genes regulating hair shape, as well as regulate interactions between the Krt28 gene promoter and distal enhancer. Moreover, Tet2/Tet3 also control three-dimensional chromatin topology in Keratin type I/II gene loci via DNA methylation–independent mechanisms. These data demonstrate the essential roles for Tet2/3 in establishment of lineage-specific gene expression program and control of Dlx3/Krt25/Krt28 axis in hair follicle epithelial cells and implicate modulation of DNA methylation as a novel approach for hair growth control. / This work was supported by the National Institutes of Health grant 5R01 AR075776 (V.A.B. and A.A.S.) and grant 5R01 AR071727 (V.A.B. and A.A.S.) and the National Science Foundation of China (G.-L.X.). / Research Development Fund Publication Prize Award winner, Dec 2022.
|
433 |
Autocrine mechanisms of action of insulin-like growth factor-I (IGF-I) and hormonal regulation of expression of IGF-finding proteins in mammary epithelial cellsRomagnolo, Donato 06 June 2008 (has links)
Limited information is available concerning the molecular and cellular mechanisms that regulate expression of insulin-like growth factor-I (IGF-I) and IGF-binding proteins (IGFBPs) genes in mammary epithelial cells. To test the hypothesis that IGF-I affects growth of bovine mammary epithelial cells through an autocrine and/or paracrine pathway, several cell lines were developed expressing an ovine exon-2 containing IGF-I cDNA under the control of the mouse mammary tumor virus-long terminal repeat (pMMTV-IGF-I), early simian virus (pSV40-IGF-I), and herpes simplex thymidine kinase (pTK-IGF-I) promoters. Stably transfected clones were generated by cotransfection of clonal MAC-T cells with the IGF-I expression vectors and a plasmid conferring resistance to hygromycin-B (HYG-B), using a calcium phosphate precipitation procedure. Induction of the MMTV-LTR with the glucocorticoid dexamethasone (DEX) was required for enhanced expression of IGF-I in MD-IGF-I (MD=Mammary Derived) cells, whereas SV40-IGF-I cells constitutively expressed the highest levels of IGF-I, followed by TK-IGF-I cells. Activity of the MMTV promoter in MD-IGF-I cells was coordinately regulated by lactogenic hormones and extracellular matrix. Acute secretion of DEX-induced recombinant IGF-I by MD-IGF-I cells stimulated cell proliferation through an autocrine/paracrine pathway and triggered the expression of IGFBP-3. Neither acute nor constitutive expression of IGF-I affected expression of type 1 IGF receptor mRNAs, but down-regulated cell surface receptor levels, in the order SV40-> TK- > MD-IGF-I. Secretion of IGF-I-induced IGFBP-3 potentiated the mitogenic actions of IGF-I as evidenced by enhancement of [³H]thymidine uptake into DNA of parental MAC-T cells. This study provides evidence that local production of IGF-I can stimulate cell proliferation of bovine mammary epithelial cells through an autocrine/paracrine mode of action. We suggest that secretion of IGF-I-induced IGFBP-3 by bovine mammary epithelial cells enhances cell responsiveness to IGF-I, but does not prevent down-regulation of the IGF-I receptor in cells constitutively expressing IGF-I. / Ph. D.
|
434 |
Epithelial Cell Damage in Chronic Obstructive Pulmonary DiseaseMa, Xinran January 2024 (has links)
Chronic Obstructive Pulmonary Disease (COPD) is a progressive respiratory disease characterized by airway inflammation and abnormal alveolar enlargement. It is the third leading cause of death around the world. Although extensive research efforts have been made, there is still no curable treatment available for lung tissue damage in patients with COPD. Therefore, it is of great significance to elucidate the mechanisms of tissue damage and repair in COPD. As the first barrier against environmental insults and pathogens, pulmonary epithelial cells play an essential role in regulating injury response and repair. However, how pulmonary epithelial cells contribute to irreversible alveolar destruction in COPD is not well understood. In this study, we elucidated the mechanisms of epithelial cell damage in both cigarette smoke-induced COPD and alpha1 antitrypsin deficiency (AATD)-associated genetic COPD.
To investigate alveolar epithelial cell damage and repair in cigarette smoke-induced emphysema, a lineage tracing model was utilized to fluorescently label and chase alveolar type II (AT2) epithelial cells, the adult progenitor cells in the alveolar epithelium. An assessment of cigarette smoke-induced changes in cellular composition and regenerative capacity of the alveolar epithelial cells was performed. Cigarette smoke was found to impede the AT2-directed alveolar epithelial regeneration and repair process, and this impaired progenitor cell function was not restored after smoke cessation. Moreover, comparison analysis between stains that are sensitive and resistant to smoke-induced damage revealed that deficiency in lipid metabolism may contribute to the dysregulation of alveolar epithelial repair by AT2 cells. Restoring alveolar progenitor functions through lipid metabolism may serve as a novel therapeutic for alveolar destruction in smoke-induced COPD.
To explore the mechanism of epithelial damage in AATD-associated genetic COPD, we utilized a PiZ (p.Glu342Lys) transgenic mouse model expressing human ZAAT protein. Morphometric analysis of PiZ lungs suggests that the accumulation of ZAAT polymers in the lung directly leads to the spontaneous development of emphysema. To investigate epithelial damage induced by zAAT accumulation, we isolated the epithelial cell population from the lung of PiZ mice. We identified epithelial-specific expression of cleaved caspase 3, indicating a direct cytotoxic effect of ZAAT in impairing epithelial function and inducing epithelial cell death. Future therapeutics could directly target the cytotoxicity of pulmonary epithelial cells in AATD to reduce lung tissue damage.
Overall, our findings suggest that pulmonary epithelial damage plays an essential role in the pathogenesis of lung tissue damage in COPD. Future epithelial cell-based therapies may contribute to pulmonary re-epithelialization and tissue repair in both cigarette smoke-induced and AATD-associated COPD.
|
435 |
Mathematical modelling of the potential determinants of foot-and-mouth disease virus-induced death of bovine epithelial cellsGiorgakoudi, Kyriaki January 2014 (has links)
Foot-and-mouth disease virus (FMDV) is a highly infectious virus affecting cloven-hoofed animals. The most prominent of its clinical signs is the development of vesicular lesions on the feet and in or around the mouth, which are a consequence of extensive FMDV-induced epithelial cell death. Currently, there is no certain biological knowledge on why extensive epithelial cell death occurs in some FMDV-infected tissues, but not in others. Using the epithelial tissues of tongue and dorsal soft palate as examples of a tissue where lesions occur and one that does not visibly exhibit FMDV-induced cell death, this work aims to identify the potential drivers of epithelial cell death and survival. A partial differential equation (PDE) model informed by experimental data on epithelial structure, is used to test epithelium thickness and cell layer structure as potential determinants. A second PDE model investigates FMDV-interferon (IFN) dynamics and their impact on the levels of cell death and survival, while an experimental study is undertaken to provide data for model validation. The work carried out casts light on the important role of a variety of factors including FMDV replication, IFN production and release, and IFN antiviral action.
|
436 |
A microfluidics-based in vitro model of the gastrointestinal human–microbe interfaceShah, Pranjul, Fritz, Joëlle V., Glaab, Enrico, Desai, Mahesh S., Greenhalgh, Kacy, Frachet, Audrey, Niegowska, Magdalena, Estes, Matthew, Jäger, Christian, Seguin-Devaux, Carole, Zenhausern, Frederic, Wilmes, Paul 11 May 2016 (has links)
Changes in the human gastrointestinal microbiome are associated with several diseases. To infer causality, experiments in representative models are essential, but widely used animal models exhibit limitations. Here we present a modular, microfluidics-based model (HuMiX, human-microbial crosstalk), which allows co-culture of human and microbial cells under conditions representative of the gastrointestinal human-microbe interface. We demonstrate the ability of HuMiX to recapitulate in vivo transcriptional, metabolic and immunological responses in human intestinal epithelial cells following their co-culture with the commensal Lactobacillus rhamnosus GG (LGG) grown under anaerobic conditions. In addition, we show that the co-culture of human epithelial cells with the obligate anaerobe Bacteroides caccae and LGG results in a transcriptional response, which is distinct from that of a co-culture solely comprising LGG. HuMiX facilitates investigations of host-microbe molecular interactions and provides insights into a range of fundamental research questions linking the gastrointestinal microbiome to human health and disease.
|
437 |
T1α/Podoplanin Shows Raft-Associated Distribution in Mouse Lung Alveolar Epithelial E10 CellsBarth, Kathrin, Bläsche, Robert, Kasper, Michael 20 March 2014 (has links) (PDF)
Aims: T1α/(podoplanin) is abundantly expressed in the alveolar epithelial type I cells (ATI) of rodent and human lungs. Caveolin-1 is a classical primary structural protein of plasmalemal invaginations, so-called caveolae, which represent specialized lipid rafts, and which are particularly abundant in ATI cells. The biological functions of T1α in the alveolar epithelium are unknown. Here we report on the characteristics of raft domains in the microplicae/microvillar protrusions of ATI cells, which contain T1α. Methods: Detergent resistant membranes (DRMs) from cell lysates of the mouse epithelial ATI-like cell line E10 were prepared using different detergents followed by flotation in a sucrose gradient and tested by Western and dot blots with raft markers (caveolin-1, GM1) and nonraft markers (transferrin receptor, PDI and β-Cop). Immunocytochemistry was employed for the localization of T1α in E10 cells and in situ in rat lungs. Results: Our biochemical results showed that the solubility or insolubility of T1α and caveolin-1 differs in Triton X-100 and Lubrol WX, two distinct non-ionic detergents. Caveolin-1 was unsoluble in both detergents, whereas T1α was Triton X-100 soluble but Lubrol WX insoluble. Immunofluorescence double stainings revealed that both proteins were colocalized with GM1, while caveolin-1 and T1α were not colocalized in the plasma membrane. Cholesterol depletion modified the segregation of T1α in Lubrol WX DRMs. Cellular processes in ultrathin sections of cultured mouse E10 cells were immunogold positive. Immunoelectron microscopy (postembedding) of rat lung tissue revealed the preferential localization of T1α on apical microvillar protrusions of ATI cells. Conclusion: We conclude that T1α and caveolin-1 are located in distinct plasma membrane microdomains, which differ in their protein-lipid interactions. The raft-associated distribution of T1α may have an impact on a specific, not yet clarified function of this protein in the alveolar epithelium. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
438 |
Découverte de cellules souches potentielles de l’épithélium thymiqueDumont-Lagacé, Maude 05 1900 (has links)
Le thymus subit un vieillissement précoce, appelé involution thymique, qui cause une perte de fonction du thymus avec l’âge. À ce jour, les mécanismes de renouvellement des cellules épithéliales thymiques (TECs) sont encore mal compris, c’est pourquoi nous avons voulu identifier les cellules souches de l’épithélium thymique. Comme les cellules souches sont quiescentes dans plusieurs tissus, les objectifs de notre étude étaient de déterminer si l’épithélium thymique contenait des cellules quiescentes et d’étudier la cinétique de prolifération des TECs chez les souris jeunes et adultes. Pour ce faire, nous avons utilisé une souris transgénique (H2B-GFP Tet-On) nous permettant d’identifier les cellules ne se divisant pas sur une longue période de temps (LRC, label-retaining cells¬). Nous avons d’abord montré que les TECs proliféraient plus rapidement chez les femelles que les mâles. De plus, nous avons trouvé plusieurs différences entre l’épithélium thymique post-natal et adulte : (1) les TECs corticales (cTECs) et médullaires (mTECs) ont un taux de prolifération similaire chez les jeunes souris, mais chez l’adulte, les cTECs prolifèrent plus lentement que les mTECs; (2) les TECs prolifèrent plus rapidement chez les souris jeunes que adultes; (3) des LRC sont détectées chez l’adulte, mais pas chez les jeunes souris. Les LRC, retrouvées dans le compartiment cTEC, sous-expriment des gènes associés à la sénescence et surexpriment des gènes importants pour le développement et le renouvellement des TECs. Ces résultats montrent que ces cellules sont quiescentes et suggèrent qu’elles pourraient bel et bien être les progéniteurs thymiques responsables du renouvellement des TECs adultes. / The thymus undergoes a rapid degeneration with age termed thymic involution that causes a loss of function of the thymus with age. To this day, mechanisms of thymic maintenance are still unknown. This is why we aimed to identify thymic epithelial stem cells. Since stem cells are quiescent in many tissues in adults, our main objectives were to determine whether the thymic epithelium contains quiescent cells and study the proliferation kinetics of thymic epithelial cells in neonatal and adult mice. To this end, we used the transgenic mouse model H2B-GFP Tet-On, a label-retaining assay allowing us to identify cells that have not divided for a prolonged period of time, which are called label-retaining cells (LRC). First, we showed that in the adult thymus, females’ thymic epithelial cells (TECs) proliferated more actively than males’ TECs. We observed three main differences between neonatal and adult thymi: (1) cTECs and mTECs have similar proliferation rates in young, but mTECs cycled more actively in adult mice; (2) neonatal TECs have a higher turnover rate than adult’s TECs, and (3) we were able to detect LRC in adult mice, but not in neonatal mice. These LRC are contained in the cTEC compartment and express very low levels of senescence-associated proteins and show a high expression of genes important for thymic development and. These results show that the LRC identified in adult thymi are not senescent cells and therefore might represent the elusive thymic progenitor cells responsible for thymic maintenance and regeneration in adult mice.
|
439 |
Étude des interactions entre Haemophilus parasuis et des cellules endothéliales et épithéliales porcines: implications d’une composante bactérienne, le lipooligosaccharide (LOS)Bouchet, Bénédicte 08 1900 (has links)
Haemophilus parasuis est un pathogène porcin causant la maladie de Glässer caractérisée par de la polysérosite fibrineuse, polyarthrite, méningite et septicémie. La pathogenèse de l’infection et les facteurs de virulence sont encore mal connus. Le site de colonisation de Haemophilus parasuis dans le tractus respiratoire supérieur est controversé. Pour accéder à la circulation sanguine, H. parasuis doit envahir la muqueuse. H. parasuis adhère à des cellules épithéliales porcines de trachée (NPTr). Pour accéder au système nerveux central et causer la méningite, H. parasuis doit traverser la barrière hémato-méningée. H. parasuis adhère à et envahit des cellules endothéliales porcines de microvaisseaux cérébraux (PBMEC) provenant de la BBB. Le but de cette étude était d’étudier certaines interactions entre H. parasuis et son lipooligosccharide (LOS), et des cellules endothéliales et épithéliales porcines. Les résultats démontrent que l’adhésion de H. parasuis Nagasaki aux NPTr et aux PBMEC est en partie médiée par son LOS. H. parasuis induit l’apoptose des NPTr et des PBMEC, mais le LOS ne semble pas impliqué. H. parasuis, et à un niveau moindre son LOS, stimulent la sécrétion d’interleukine- (IL) 6 et d’IL-8. Différentes souches de H. parasuis sérotypes 4 et 5 (sérotypes les plus prévalents en Amérique du Nord) stimulent également les NPTr et PBMEC à produire IL-6 et IL-8. Les résultats suggèrent que le LOS de H. parasuis joue un certain rôle dans la pathogenèse de l’infection, mais d’autres composantes bactériennes sont également impliquées. / Haemophilus parasuis is a swine pathogen that causes Glässer’s disease characterized by fibrinous polyserositis, polyarthritis, meningitis and septicemia. The pathogenesis of the infection and virulence factors are not well known. Whether the upper respiratory tract is the site of colonization of H. parasuis is still a controversial issue. H. parasuis must invade the mucosa to gain access to the bloodstream. H. parasuis is able to adhere to newborn pig trachea cells (NPTr). H. parasuis must then cross the blood-brain barrier to gain access to the central nervous system in cases of meningitis. H. parasuis is able to adhere to and invade porcine brain microvascular endothelial cells (PBMEC). The aim of this work was to study the interactions between H. parasuis, its lipooligosccharide (LOS), and porcine endothelial and epithelial cells. Results showed that adhesion of H. parasuis Nagasaki to NPTr and PBMEC was partially mediated by its LOS. H. parasuis induced NPTr and PBMEC apoptosis, although purified LOS does not seem to be involved. H. parasuis, and to a lesser extent its LOS, stimulated the release of interleukin- (IL) 6 and IL-8. Field strains of H. parasuis serotypes 4 and 5 (the most prevalent serotypes in North America) also induced the production of IL-6 and IL-8. Results suggest that H. parasuis LOS plays a role in the pathogenesis of the infection, but other bacterial components are also involved.
|
440 |
Mammary Epithelial Cells Cultured onto Non-Woven Nanofiber Electrospun Silk-Based Biomaterials to Engineer Breast Tissue ModelsMaghdouri-White, Yas 09 April 2014 (has links)
Breast cancer is one of the most common types of cancer affecting women in the world today. To better understand breast cancer initiation and progression modeling biological tissue under physiological conditions is essential. Indeed, breast cancer involves complex interactions between mammary epithelial cells and the stroma, both extracellular matrix (ECM) and cells including adipocytes (fat tissue) and fibroblasts (connective tissue). Therefore, the engineering of in vitro three-dimensional (3D) systems of breast tissues allows a deeper understanding of the complex cell-cell and cell-ECM interactions involved during breast tissue development and cancer initiation and progression. Furthermore, such 3D systems may provide a viable alternative to investigate new drug or drug regimen and to model and monitor concurrent cellular processes during tumor growth and invasion. The development of suitable 3D in vitro models relies on the ability to mimic the microenvironment, the structure, and the functions of the breast tissue. Different approaches to develop a novel 3D breast model have been investigated. Most models use gel scaffolds, including Matrigel® and collagen to generate breast tissue-like structures. However, the physicochemical, mechanical, and geometrical properties of these scaffolds only partially meet the mechanical, physical, and chemical parameters of the breast tissue matrix. In the present studies, we investigated the overall hypothesis that electrospun SF-derived scaffolds promote mammary cell growth and the formation of mammary-like structures depending on the composition and/or coating of the scaffolds with ECM proteins. Through an extensive literature search (1) the importance of 3D modeling of tissues and organs in vivo, (2) 3D modeling of the mammary tissue and currently available models, (3) the properties and applications of SF in tissue modeling and regeneration were reviewed (Chapter 1). Our studies provide evidence of the effects of various concentrations (Chapter 2) of SF along with different electrospinning techniques (Chapter 3) on the structure of electrospun scaffolds and whether those scaffolds provide suitable microenvironments for mammary epithelial cells as determined by MCF10A cell attachment, viability, and structure formation. Further, we investigated the effects of the key ECM proteins collagen I (Chapter 4) and laminin (Chapter 5) used to blend or coat, respectively, SF scaffolds on the attachment, viability and structure formation of mammary epithelial cells. Our studies first highlight the mechanical and physical properties of the different SF-derived scaffolds through various SF concentrations and electrospinning techniques. Second, the biocompatibility of these SF electrospun scaffolds was defined based on MCF10A cell survival and adhesion. Third, our data indicate that scaffolds derived from blended and/or coated SF with collagen I also promoted human mammary cell survival and adhesion. Lastly, our observations suggest that on laminin-coated SF scaffolds MCF10A mammary cells, in the presence of lactogenic hormones, differentiated forming acinus-like structures. Overall, these studies provide evidence that SF electrospun scaffolds closely mimic the structure of the ECM fibers and allow many advantages such as; physical and chemical modification of the microenvironment by varying electrospinning parameters and addition of various proteins, hormones, and growth factors, respectively. Further, coating these SF scaffolds with essential ECM proteins, in particular laminin, promote cell-ECM interactions necessary for cell differentiation and formation of growth-arrested structures, through providing cell integrin binding sites and appropriate chemical cues.
|
Page generated in 0.075 seconds