• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 13
  • 11
  • 10
  • 5
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 130
  • 39
  • 21
  • 17
  • 16
  • 15
  • 14
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Synthesis, Characterization and Catalytic Activity of Chromium Complexes

Gurnham, Joanna January 2014 (has links)
There has been a growing demand for specific linear alpha olefins in the polyethylene industry in order to control polymer rheology. This growing demand thereby increases the need for highly active and selective ethylene oligomerization catalysts. Chromium-based catalysts continue to be of high interest for this application due to this metal’s versatility in both selective and non selective ethylene oligomerization. Ligand design is an important consideration in oligomerization chemistry: the ability of the ligand to stabilize low valent chromium and to support a two-electron redox process will allow the catalytic systems to follow the selective ring expansion mechanism for oligomerization. Chelating aminophosphane based ligands, previously studied by our group, have been shown to support both tri- and tetramerization of ethylene. We have explored modifications of one of the NP arms by replacing with a different coordinating group in an attempt to further stabilize the monovalent state of chromium and increase selectivity. Other ligands explored in this work are pyrrole based ligands, which have shown high activity and selectivity towards ethylene oligomerization. One example of this is the commercial Chevron-Phillips system. Recently, the co-polymerization of CO2 with epoxides has been studied as an environmentally friendly route to convert CO2 into biodegradable polymers. The first successful catalytic system to achieve these results consisted of a diethyl-zinc complex. More recently, aluminum, chromium, cadmium and cobalt have been studied as polycarbonate catalysts. To date, the only reported chromium catalysts for CO2-epoxide copolymerization are Cr-salen and Cr-porphyrin complexes, studied by Darrensbourg and Holmes, respectively. We were particularly interested in finding new chromium-based complexes able to catalyze epoxide/CO2 copolymerization by using molecules with the nitrogen donor motif embedded in different functions such as neutral pyridines with anionic pendants, pyrroles with either imine or amine pendants, or a combination of these.
42

Industrially relevant epoxy-acrylate hybrid resin photopolymerizations

Ajiboye, Gbenga I. 01 December 2012 (has links)
Photopolymerization of epoxy-acrylate hybrid resins takes advantages of inherent properties present in the free-radical and cationic reactions to reduce oxygen inhibition problems that plague free-radical reactions. Similarly, the combined reaction mechanisms reduce moisture sensitivity of the cationic reactions. Despite the advantages of epoxy-acrylate hybrid resins, problems persist that need to be addressed. For example, low conversion and polymerization rate of the epoxides are a problem, because the fast acrylate conversion prevents the epoxide from reaching high conversion. Controlling phase separation is challenging, since two moieties with different properties are reacting. The physical properties of the polymer will be impacted by the availability of different moieties. High shrinkage stress results from the acrylate moiety, causing buckling and cracking in film and coating applications. The overall goal of this study is to use the fundamental knowledge of epoxy-acrylate hybrid resins to formulate industrially viable polymers. In order to achieve this goal, the study focuses on the following objectives: (I) determine the apparent activation energy of the hybrid monomer METHB, (II) increase epoxide conversion and polymerization rate of hybrid formulations, and (III) control physical properties in epoxy-acrylate hybrid resins. In order to increase the epoxide conversion and rate of polymerization, the sensitivity of epoxides to alcohol is used to facilitate the activated monomer (AM) mechanism and induce a covalent bond between the epoxide and acrylate polymers through the hydroxyl group. It is hypothesized that if the AM mechanism is facilitated, epoxide conversion will increase. As a result, the resins can be tailored to control phase separation and physical properties, and shrinkage stress can be reduced. In pursuit of these objectives, the hybrid monomer METHB was polymerized at temperatures ranging from 30°C to 70°C to obtain apparent activation energy of 23.49 kJ/mol for acrylate and 57 kJ/mol for epoxide moeities. Then, hybrid systems pairing hydroxyl-containing acrylates with epoxides were formulated to promote the faster AM mechanism. Monomer composition was changed in the presence of hydroxyl-containing acrylate, and initiators were carefully selected in order to control phase separation. The conversion of acrylate and epoxide was monitored in real time by Raman spectroscopy. The physical and mechanical properties were monitored using dynamic mechanical analysis. Epoxide conversion and rate of polymerization in epoxide-acrylate hybrid monomer systems were shown to increase through the introduction of a hydroxyl group on the meth/acrylate monomer, taking advantage of the faster AM mechanism. In addition, this covalent bond linking the epoxide network to the meth/acrylate polymer chains resulted in little or no phase separation and a reduction of the Tg for the hybrid polymer compared to the neat epoxide. Fundamental knowledge gained from this research will enable the use of epoxy-acrylate hybrid resins in variety of applications. For instance, shrinkage may be reduced in dental fillings, noise and vibration problems in aircraft and other machinery may be controlled, and photopolymerization cost could be reduced in thin film applications.
43

Epoxidhydrolasy získané z environmentální DNA: vlastnosti rozpustné a imobilizované formy enzymu / Epoxide hydrolases expressed from environmental DNA: characteristics of soluble and immobilized enzyme forms

Grulich, Michal January 2010 (has links)
8 Abstract Epoxide hydrolases (EHs) demonstrating high degree of enantioselectivity or enantioconvergence are useful biocatalysts for the production of optically active epoxides and vicinal diols, which can serve as chiral building blocks for syntheses of biologically active drugs. EHs can play an important role also in degradations of xenobiotics. Genes encoding EHs Kau2 and Kau8 were expressed in E. coli host strains TOP10 and RE3. Enantioselectivities and regioselectivities of Kau2 and Kau8 in supernatants of desintegrated cells were determined for four substrates: tert-butylglycidyl ether, para-chlorostyrene oxide, para-nitrostyrene oxide, α-methylstyrene oxide. The highest values of enantioselectivity and regioselectivity were achieved with Kau2 and para-nitrostyrene oxide as a substrate. The Kau2 was chosen for further experiments on the basis of these results. Kau2 was overexpressed in the recombinant strain RE3(pSEKau2). We performed two batch cultures and one fed-batch culture in stirred bioreactor. The highest volumetric activity of 4500 U/l was obtained in the case of fed-batch culture. Two phase system consisting of polyethylenglycole 6000 and sodium citrate (pH 7.7) was used for Kau2 purification from the supernatant of desintegrated cells. Purification factor 2.6 +/- 0.3 was achieved and...
44

Living Carbocationic Polymerization of Isobutylene by Epoxide/Lewis Acid Systems: The Mechanism of Initiation

Hayat Soytas, Serap 09 June 2009 (has links)
No description available.
45

Studies toward the synthesis of the C19 quassinoid polyandrane

Donahue, Matthew G. 07 October 2005 (has links)
No description available.
46

Leukotriene A4 hydrolase : studies of structure-function relationships by site-directed mutagenesis and X-ray crystallography /

Rudberg, Peter C., January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 4 uppsatser.
47

A Computational Investigation of the Biosynthesis of Lanosterol

Townsend, Michael Arthur Edward January 2006 (has links)
The biosynthesis of the steroid precursor molecule lanosterol is a remarkable process in which the enzyme-bound substrate 2,3-S-oxidosqualene forms four new carbocyclic rings by a cascade of cation-alkene addition reactions, followed by a series of 1,2-methyl and hydride shifts. The work presented in this thesis is a computational study of the reactions of compounds designed to model the oxidosqualene-lanosterol cyclisation in order to establish details of the mechanism of this amazing cyclisation. The initiation of oxidosqualene cyclisation has been modelled by the intermolecular reaction of protonated oxirane and methylpropene. The SN2-like ring opening of the protonated epoxide is strongly exothermic with a low barrier to reaction; the geometry of the gas phase reaction has been found to be significantly affected by hyperconjugative stabilisations and low energy steric interactions. The energy profile and geometry of this reaction can now be compared to analogous intramolecular reactions such as the formation of the lanosterol A-ring. The competing five- and six-membered cyclisations of a series of substituted A-ring model compounds was investigated. It has been found that the facile cleavage of the protonated epoxide causes the reaction to behave more as an electrophilic addition than as a nucleophilic ring-opening substitution. This behaviour accounts for the general preference of protonated epoxides to react at the more substituted carbon atom, while epoxides in neutral or basic media react at the least sterically hindered carbon. With consideration for Baldwin's rules for ring closure, it is seen that the series of model compounds generally favours six-membered ring formation endo at the epoxide. The formation of the lanosterol B-ring was studied using a bicyclic model system. Previous computational studies had predicted the B-ring to close with readily with an activation energy of less than 1 kcal mol-1, however the present study has found a significant barrier to cyclisation of ca. 5-7 kcal mol-1 in this gas-phase model at the HF/6-31G(d) level of theory. This barrier is thought to arise from the closure of the B-ring in a sterically hindered twist-boat conformation.
48

Extending the Reach of Computational Approaches to Model Enzyme Catalysis

Amrein, Beat Anton January 2017 (has links)
Recent years have seen tremendous developments in methods for computational modeling of (bio-) molecular systems. Ever larger reactive systems are being studied with high accuracy approaches, and high-level QM/MM calculations are being routinely performed. However, applying high-accuracy methods to large biological systems is computationally expensive and becomes problematic when conformational sampling is needed. To address this challenge, classical force field based approaches such as free energy perturbation (FEP) and empirical valence bond calculations (EVB) have been employed in this work. Specifically: Force-field independent metal parameters have been developed for a range of alkaline earth and transition metal ions, which successfully reproduce experimental solvation free energies, metal-oxygen distances, and coordination numbers. These are valuable for the computational study of biological systems. Experimental studies have shown that the epoxide hydrolase from Solanum tuberosum (StEH1) is not only an enantioselective enzyme, but for smaller substrates, displays enantioconvergent behavior. For StEH1, two detailed studies, involving combined experimental and computational efforts have been performed: We first used trans-stilbene oxide to establish the basic reaction mechanism of this enzyme. Importantly, a highly conserved and earlier ignored histidine was identified to be important for catalysis. Following from this, EVB and experiment have been used to investigate the enantioconvergence of the StEH1-catalyzed hydrolysis of styrene oxide. This combined approach involved wildtype StEH1 and an engineered enzyme variant, and established a molecular understanding of enantioconvergent behavior of StEH1. A novel framework was developed for the Computer-Aided Directed Evolution of Enzymes (CADEE), in order to be able to quickly prepare, simulate, and analyze hundreds of enzyme variants. CADEE’s easy applicability is demonstrated in the form of an educational example. In conclusion, classical approaches are a computationally economical means to achieve extensive conformational sampling. Using the EVB approach has enabled me to obtain a molecular understanding of complex enzymatic systems. I have also increased the reach of the EVB approach, through the implementation of CADEE, which enables efficient and highly parallel in silico testing of hundreds-to-thousands of individual enzyme variants.
49

Clonagem e caracterização da enzima epóxido hidrolase de Trichoderma reesei. / Cloning and characterization of the enzyme epoxide hydrolase of the Trichoderma reesei.

Oliveira, Gabriel Stephani de 16 May 2018 (has links)
Epóxido hidrolases (EHs) são enzimas que catalisam a hidrólise de epóxidos a seus correspondentes dióis, apresentam potencial aplicação biotecnológica (separação de enantiômeros na produção de fármacos), estão envolvidas no metabolismo de ácidos graxos poliinsaturados e inibidores de EHs estão sendo estudados para possível utilização no tratamento de doenças. Uma enzima epóxido hidrolase (TrEH) do fungo filamentoso Trichoderma reesei QM9414 foi clonada, expressa, purificada e caracterizada funcionalmente e estruturalmente. A atividade de TrEH foi determinada com o substrato óxido de estireno (racêmico), demonstrando maior atividade nas temperaturas de 23 a 50 °C, no pH 7,2 a 37 °C, e as constantes cataliticas Km= 4,6 mM e kcat= 336 s-1. A enzima recombinante mostrou ser enantiosseletiva, pois hidrolisa preferencialmente (S)-(-)-óxido de estireno, (R)-(-)- epicloridrina e (S)-(-)-1,2-epoxibutano. Moléculas inibidoras da atividade de TrEH foram identificadas e algumas delas inibem até 60% o crescimento de T. reesei. A estrutura terciária de TrEH (1,7 Å) foi determinada por cristalografia, apresenta dobramento α/β-hidrolase e não tem alta homologia com nenhuma outra estrutura de EH. TrEH é uma nova enzima epóxido hidrolase solúvel cujas propriedades mostram seu potencial de utilização em aplicações biotecnológicas. / Epoxide hydrolases (EHs) are enzymes that catalyze the hydrolysis of epoxides to their corresponding diols, present a potential biotechnological application (separation of enantiomers for the production of drugs), they are involved in the metabolism of polyunsaturated fatty acids and EH inhibitors are being studied for possible use in the treatment of diseases. An epoxide hydrolase enzyme(TrEH) from the filamentous fungus Trichoderma reesei QM9414 was cloned, expressed, purified and functionally and structurally characterized. The activity of TrEH was determined with the substrate styrene oxide (racemic), showing higher activity at temperatures of 23 to 50 °C, at pH 7.2 at 37 °C, and the catalytic constants Km= 4.6 mM and kcat= 336 s-1. The recombinant enzyme has been shown to be enantioselective, because it preferably hydrolyzes (S)-(-)-styrene oxide, (R)-(-)-epichlorohydrin and (S)-(-)-1,2- epoxybutane. TrEH inhibitors have been identified and some of them inhibit up to 60% growth of T. reesei . The tertiary structure of TrEH (1.7 Å) was determined by crystallography, showing α/ β-hydrolase folding and low homology with any other EH structure. TrEH is a new soluble epoxide hydrolase enzyme whose properties show its potential for use in biotechnological applications.
50

Synthèse et caractérisation des dérivées des polysaccharides modifiés hydrophobement / Synthesis and characterization of hydrophobically modified derivatives of polysaccharides

Miao, Xia 04 October 2011 (has links)
Ce travail avait pour principal objectif la synthèse de nouveaux systèmes amphiphiles à base de polysaccharides neutres (guar, hydroxyéthyl guar) ou chargés (acide hyaluronique), par greffage de groupements hydrophobes le long de la chaîne polysaccharidique. La stratégie de synthèse proposée pour ces dérivés amphiphiles repose sur des réactions d'éthérification en milieu basique des polysaccharides à partir d'éthers de glycidyle (époxydes) hydrophobes commerciaux (hexadécyl éther de glycidyle, phényl éther de glycidyle) et non commerciaux (Brij 56 époxyde, OP10 époxyde). Des dérivés de type Brij56® ont été sélectionnés en raison de leur structure chimique particulière, présentant un bloc oligo(éthylène glycol) (OEG) associé à une chaîne alkyle hydrophobe, susceptibles de conduire en milieu aqueux à des propriétés différentes par rapport à des dérivés alkylés classiques du fait de l'hydrophile du bloc OEG. Plusieurs conditions de greffage ont été testées et appliquées également à un dérivé de la cellulose disponible commercialement (hydroxyéthyl cellulose) afin de comparer l'efficacité des réactions en fonction de la nature du polysaccharide. L'analyse du comportement en milieu aqueux des polysaccharides hydrophobiquement modifiés par des mesures de viscosité met en évidence soit des augmentations de viscosité, soit des diminutions. Des analyses plus approfondies combinant la diffusion de la lumière et la spectroscopie de fluorescence en utilisant des sondes hydrophobes ont montré que de telles diminutions pouvaient être expliquées dans certains cas (acide hyaluronique) par la formation de particules de taille nanométrique. / The main aim of this work was the synthesis of new amphiphilic systems from neutral polysaccharides (guar, hydroxyethyl guar) or charged polysaccharides (hyaluronic acid), based on the grafting of hydrophobic groups along the polysaccharide backbone. The synthetic strategy proposed for these derivatives relies on etherification reactions of the polysaccharides in alkaline media from commercial hydrophobic alkyl glycidyl ethers (epoxides) (glycidyl hexadecyl ether, phenyl glycidyl ether) or non commercial glycidyl ethers (Brij 56 epoxide, OP10 epoxide). Derivatives of Brij 56 have been selected due to their peculiar chemical structure consisting of an oligo(ethylene glycol) (OEG) block associated to a hydrophobic alkyl chain, expected to lead to different properties in aqueous media compared to classical alkylated derivatives as a result of the hydrophilic character of the OEG block. Several grafting conditions have been tested and also applied to a commercially available cellulose derivative (hydroxyethyl cellulose) in order to compare the efficiency of reactions as a function of the nature of the polysaccharide. The analysis of the behavior in aqueous media of hydrophobically modified polysaccharides by viscosity measurements demonstrated either increases of viscosity or decreases. Deeper investigations combining dynamic light scattering and fluorescence spectroscopy showed that such viscosity decreases was related to some cases (hyaluronic acid) to the formation of nanosized particles.

Page generated in 0.0428 seconds